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19.1 INTRODUCTION

Channel current-based nanopore cheminformatics provides an incredibly versatile
method for transducing single-molecule events into discernable channel current
blockade levels. Single biomolecules, and the ends of biopolymers such as DNA,
have been examined in solutionwith nanometer-scale precision [1–6]. In early studies
[1], itwas found that complete base-pair dissociations of dsDNAto ssDNA, “melting,”
could be observed for sufficiently short DNA hairpins. In later works [3, 5], the
nanopore detector attained angstrom resolution and was used to “read” the ends of
dsDNA molecules and was operated as a chemical biosensor. In Refs. [1, 2, 4] the
nanopore detector was used to observe the conformational kinetics at the termini of
single DNA molecules. In Refs. [7, 8], preliminary evidence of single-molecule
binding and conformational kinetics was obtained by observation of single-molecule
channel blockade currents. The DNA–DNA, DNA–protein, and protein–protein
binding experiments that were described were novel in that they made critical use
of indirect sensing (described below), where one of the molecules in the binding
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experiment is either a natural channel blockademodulator or is attached to a blockade
modulator.

19.2 NANOPORE DETECTOR BACKGROUND AND METHODS

19.2.1 The Highly Stable, Nanometer-Scale, a-Hemolysin
Protein Channel

The nanopore detector is based on the a-hemolysin transmembrane channel, formed
by seven identical 33 kDa protein molecules secreted by Staphylococcus aureus. The
total channel length is 10 nm and is comprised of a 5-nm transmembrane domain and a
5-nm vestibule that protrudes into the aqueous cis compartment [9]. The narrowest
segment of the pore is a 1.5-nm-diameter aperture [9]. By comparison, a single strand
of DNA is about 1.3 nm in diameter and able to translocate. Although dsDNA is too
large to translocate, about 10 base pairs at one end can still be drawn into the large cis-
side vestibule (see Fig. 19.1a). This actually permits themost sensitive experiments to
date, as the ends of “captured” dsDNA molecules can be observed for extensive
periods of time to resolve features [1–5].

19.2.2 The Coulter Counter

The notion of using channels as detection devices dates back to the Coulter counter
[10], where pulses in channel flow were measured to count bacterial cells. Cell
transport through the Coulter counter is driven by hydrostatic pressure, and interac-
tions between the cells and the walls of the channel are ignored. Since its original
formulation, channel sizes have reduced frommillimeter scale to nanometer scale, and
the detection mechanism has shifted from measurements of hydrostatically driven
fluid flow to measurements of electrophoretically driven ion flow. Analytes observed
via channel measurements are likewise reduced in scale and are now at the scale of
single biomolecules such as DNA and polypeptides [1–6, 11–16]. In certain
situations, intramolecular, angstrom-level features are beginning to be resolved as
well [1–5].

For nanoscopic channels, interactions between channel wall and translocating
biomolecules cannot, usually, be ignored. On the one hand, this complicates analysis
of channel blockade signals, andon theother hand, tell-tale on-off kinetics are revealed
for binding between analyte and channel, and this is what has allowed the probing of
intramolecular structure on single DNA molecules [1–5].

19.2.3 Coulter Data—Blockades Typically Static

Biophysicists and medical researchers have performed measurements of ion flow
through single nanopores since the 1970s [17, 18]. The use of very large (biological)
pores as polymer sensors is a relatively new possibility that dates from the
pioneering experiments of Bezrukov et al. [16]. Their work proved that resistive
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pulse measurements, familiar from cell counting with the Coulter counter [10], could
be reduced to themolecular scale and applied to polymers in solution.A seminal study,
byKasianowicz et al. [11], then showed that individualDNAandRNApolymers could
be detected via their translocation blockade of a nanoscale pore formed by
a-hemolysin toxin. In such prior nanopore detection work, the data analysis problems
were also of a familiar “Coulter event” form, where the event was associated with a
current blockade at a certain fixed level. A more informative setting is possible with
nanometer-scale channels, however, due to nonnegligible interaction between analyte
and channel. In this situation, the blockadingmoleculewill not provide a single, fixed
current reduction in the channel, butwillmodulate the ion flow through the channel by
imprinting its binding interactions and conformational kinetics on the confined
channel flow environment.

Figure19.1 Thea-hemolysin nanoporedetector andcheminformaticsarchitecture. (a) (A) shows

a nanopore device based on the a-hemolysin channel (fromRef. 3). It has been used for analysis of

singleDNAmolecules, such as ssDNA, shown, and dsDNA, a nine-base pair DNAhairpin is shown

in (B) superimposed on the channel geometry. The channel current blockade trace for the nine-

basepair DNAhairpin blockade from (B) is shown in (C). (b) The signal processingarchitecture that

was used to classify DNA hairpins with this approach: Signal acquisition was performed using a

time-domain, thresholding, finite stateautomaton, followedbyadaptiveprefilteringusingawavelet-

domain finite state automaton. Hidden Markov model (HMM) processing with expectation–

maximization (EM) was used for feature extraction on acquired channel blockades. Classification

was then done by support vector machine (SVM) on five DNA molecules: four DNA hairpin

molecules with nine base-pair stem lengths that only differed in their blunt-ended DNA termini and

an eight base-pair DNA hairpin. The accuracy shown is obtained upon completing the 15th single-

molecule sampling/classification (in �6 s), where SVM-based rejection on noisy signals was

employed.
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19.2.4 Nanopore Detector Augmentation Using Bifunctional Molecules

The improved detector sensitivity with toggling-type auxiliary molecules opens the
door to a new, highly precise means for examining the binding affinities between any
two molecules (bifunctional or not), all while still in solution. The bifunctional
molecules that have been studied on the nanopore detector include antibodies and
aptamers that were chosen to demonstrate the specific utility of this device in drug
candidate screening (see Ref. [7]). In brief, an auxiliary molecule can be rigidly/
covalently bound to themolecule of interest, and then exposed to a solution containing
the other molecule of interest. The transitions between different stationary phases of
blockade can then be related to the bound/unbound configuration between the two
molecules of interest to reveal their binding kinetics (and binding strength).

19.2.5 Detection of Short-Term Binding and Stationary Phase

There are important distinctions in howananopore detector can function: direct versus
indirect measurement of static, stationary, dynamic (possibly modulated), or nonsta-
tionary channel blockades.

A nanopore-based detector can directlymeasuremolecular characteristics in terms
of the blockade properties of individual molecules—this is possible due to the kinetic
information that is embedded in the blockade measurements, where the adsorption–
desorption history of themolecule to the surrounding channel, and the configurational
changes in the molecule itself directly, imprint on the ionic flow through the channel
[1–6]. (Note: The hypothesis that the current blockade patterns are caused by
adsorption–desorption, and conformational flexing, is not conclusively proven,
although preliminary work on mechanism [5] and the success of the experimental
approaches [1–6] add growing credence to this hypothesis.) This approach offers
prospects for DNA sequencing and single nucleotide polymorphism (SNP) analysis.

The nanopore-based detector works indirectly if it uses a reporter molecule that
binds to certain molecules, with subsequent distinctive blockade by the bound-
molecule complex. One example of this, with the established DNA experimental
protocols, is exploration of transcription factor binding sites via the different dsDNA
blockade signals that occur with and without DNA binding by a hypothesized
transcription factor. Similarly, a channel-captured dsDNA “gauge” that is already
bound to an antibody could provide a similar blockade shift upon antigen binding to its
exposed antibody. The latter description provides the general mechanism for directly
observing the single-molecule antigen-binding affinities of any antibody.

19.2.6 Nanopore Observation of Conformational Kinetics

Two conformational kinetic studies have been done, one on DNA hairpins with HIV-
like termini [8], and theother onantibodies (preliminary results shown inRef. [7]).The
objective of the DNA HIV-hairpin conformational study was to systematically test
how DNA dinucleotide flexibility (and reactivity) could be discerned using channel
current blockade information (see Ref. [8]).
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19.3 CHANNEL CURRENT CHEMINFORMATICS METHODS

19.3.1 The Channel Current Cheminformatics Architecture

The signal processing architecture (Fig. 19.1b) is designed to rapidly extract useful
information from noisy blockade signals using feature extraction protocols, wavelet
analysis, HMMs and SVMs. For blockade signal acquisition and simple, time-domain
feature extraction, a finite state automaton (FSA) approach is used [19] that is based on
tuning a variety of threshold parameters. A generic HMM can be used to characterize
current blockades by identifying a sequence of subblockades as a sequence of state
emissions [20–22]. The parameters of the generic-HMMcan then be estimated using a
method called EM [23] to effect denoising. The HMM method with EM, denoted
HMM/EM, is used inwhat follows (further backgroundon thesemethods can be found
in Ref. [1–6]). Classification of feature vectors obtained by the HMM for each
individual blockade event is then done using SVMs, an approach that automatically
provides a confidence measure on each classification.

19.3.2 The Feature Vectors for SVM Analysis

Thenanopore detector is operated such that a streamof100-ms samplings are obtained
(throughput was approximately one sampling per 300 ms in Ref. [3]). Each 100 ms
signal acquired by the time-domain FSA consists of a sequence of 5000 subblockade
levels (with the 20 ms analog-to-digital sampling). Signal preprocessing is then used
for adaptive low-pass filtering. For the data sets examined, the preprocessing is
expected to permit compression on the sample sequence from 5000 to 625 samples
(later HMM processing then only required construction of a dynamic programming
table with 625 columns). The signal preprocessing makes use of an off-line wavelet
stationarity analysis (off-line wavelet stationarity analysis, Fig. 19.1b).

With completion of preprocessing, an HMM is used to remove noise from the
acquired signals and to extract features from them (feature extraction stage, Fig. 19.1b).
TheHMMis, initially, implementedwith 50 states, corresponding to current blockades
in 1% increments ranging from 20% residual current to 69% residual current. The
HMMstates, numbered 0–49, corresponded to the 50 different current blockade levels
in the sequences that are processed. The state emission parameters of the HMM are
initially set so that the state j, 0� j� 49 corresponding to level L¼ jþ 20, can emit all
possible levels, with the probability distribution over emitted levels set to a discretized
GaussianwithmeanL and unit variance.All transitions between states are possible and
initially are equally likely. Each blockade signature is denoised by five rounds of EM
training on the parameters of the HMM. After the EM iterations, 150 parameters are
extracted from the HMM. The 150 feature vectors obtained from the 50-state HMM-
EM/Viterbi implementation in Refs. [1–8] are the 50 dwell percentage in the different
blockade levels (from the Viterbi trace-back states), the 50 variances of the emission
probability distributions associated with the different states, and the 50 merged
transition probabilities from the primary and secondary blockade occupation levels
(fits to two-state dominant modulatory blockade signals).
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19.3.3 s-FSA Blockade Acquisition and Feature Extraction

A channel current spike detector algorithm was developed in Ref. [8] to characterize
the brief, very strong blockade “spike” behavior observed for molecules that occa-
sionally break in the region exposed to the limiting aperture’s strong electrophoretic
force region. (In Ref. [1–6], where nine base-pair hairpins were studied, the spike
events were attributed to a fray/extension event on the terminal base pair.) Together,
the formulation of HMM-EM, FSAs, and spike detector provides a robust method for
analysis of channel current data. Application of these methods is described in Ref. [8]
for radiation-damaged DNA signals. The spike detector software is designed to count
“anomalous” spikes, that is, spike noise not attributable to the gaussian fluctuations
about the mean of the dominant blockade level. Spike count plots are generated to
show increasing counts as cutoff thresholds are relaxed (to where eventually any
downward deflection will be counted as a spike). The plots are automatically
generated and automatically fit with extrapolations of their linear phases (exponential
phases occurwhen cutoffs begin to probe the noise bandof a blockade state—typically
Gaussian noise “tails”). The extrapolations provide an estimate of “true” anomalous
spike counts.

19.3.4 Markov Chains

Key “short-term memory” property of a Markov chain P(xi|xi�1, . . ., x1)¼P(xi|xi�1)
¼ axi� 1xi , where axi� 1xi are sometimes referred to as “transition probabilities,” and we
haveP(x)¼P(xL, xL�1, . . .,x1)¼P(x1)

Q
i¼2. . .L axi� 1xi . IfwedenoteCy for the count of

events y, Cxy for the count of simultaneous events x and y, Ty for the count of strings
of length 1, and Txy for the count of strings of length 2, axi� 1xi ¼P(x | y)¼P(x,y)/
P(y)¼ [Cxy/Txy]/[Cy/Ty]. Note that since Txyþ 1¼ Ty! Txyffi Ty (sequential data
sample property if one long training block), axi� 1xi ffiCxy/Cy¼Cxy/

P
xCxy; so Cxy is

complete information for determining transition probabilities.

19.3.5 Viterbi Path

The recursive algorithm for themost likely state path given an observed sequence (the
Viterbi algorithm) is expressed in termsof vki, the probability of themost probable path
that ends with observation Zi¼ zi and state Si¼ k. The recursive relation is vki¼
maxn{ekiankvn(i�1)}, where themaxn{. . .} operation returns themaximumvalue of the
argument over different values of index n, and the boundary condition on the recursion
is vk0 ¼ ek0pk. The akl are the transition probabilitiesP(Si¼ l | Si-1¼ k) to go from state
k to state l. The ekb are the emission probabilitiesP(Zi¼ b | Si¼ k) while in state k. The
emission probabilities are the main place where the data are brought into the HMM–
EMalgorithm(An inversionon theemissionprobability is possiblewhen the states and
emissions share the same alphabet of states/quantized emissions, and it is described in
the results). The Viterbi path labelings are then recursively defined by p(Si|S(iþ1)¼
n)¼ argmaxk{vkiakn}, where the argmaxn{. . .} operation returns the index n with
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maximum value of the argument. The evaluation of sequence probability (and its
Viterbi labeling) takes the emission and transition probabilities as a given. Estimates
on these emission and transition probabilities are usually obtained by the EM
algorithm.

19.3.6 Forward and Backward Probabilities

The forward/backward probabilities are used in the HMM–EM algorithm. The
probabilities occur when evaluating p(Z0 . . .L�1) by breaking the sequence probability
p(Z0 . . .L�1) into two pieces via use of a single hidden variable treated as a Bayesian
parameter: p(Z0 . . . L�1)¼Sk p(Z0 . . . i, si¼ k)p(Ziþ1 . . . L�1, si¼ k)¼Sk fkibki, where
fki¼ p(Z0 . . . i, si¼ k) and bki¼ p(Ziþ1 . . . L�1, si¼ k). Given stationarity, the state tran-
sition probabilities and the state probabilities at the ith observation satisfy the trivial
relation pqi¼Skakqpk(i�1), where pqi¼ p(Si¼ q) and pq0¼ p(S¼ q), and the latter
probabilities are the state priors. The trivial recursion relation that is implied can be
thought of as an operator equation, with operation the product by akq followed by
summation (contraction) on the k index. The operator equation can be rewritten using
an implied summation convention on repeated Greek-font indices (Einstein summa-
tion convention): pq¼ abqpb. Transition probabilities in a similar operator role, but
now taking into consideration local sequence information via the emission probabili-
ties, are found in recursively defined expressions for the forward variables, fki¼
eki(abkfb(i�1)), and backward variables, bki¼ akbeb(iþ1)bb(iþ1). The recursive defini-
tions on forward and backward variables permit efficient computation of observed
sequence probabilities using dynamic programming tables. It is at this critical juncture
that side informationmustmeshwellwith the states (columncomponents in the table),
that is, in a manner like the emission or transition probabilities. Length information,
for example, can be incorporated via length-distribution-biased transition probabili-
ties (as described in a new method in Ref. [24]).

19.3.7 HMM-with-Duration Channel Current Signal Analysis

The HMM-with-Duration implementation, described in Ref. [24], has been tested in
terms of its performance at parsing synthetic blockade signals. The synthetic data
range over an exhaustive set of possibilities for thorough testing of the HMM-with-
duration. The synthetic data used in Ref. [24] were designed to have two levels, with
lifetime in each level determined by a governing distribution (Poisson and Gaussian
distributions with a range of mean values were considered). The results clearly
demonstrate the superior performance of the HMM-with-duration over its simpler,
HMM-without-duration, formulation. With the use of the EVA-projection method,
this affords a robust means to obtain kinetic feature extraction. The HMM with
duration is critical for accurate kinetic feature extraction, and the results in Ref. [24]
suggest that this problem can be elegantly solved with a pairing of the HMM-with-
duration stabilization with EVA projection.

CHANNEL CURRENT CHEMINFORMATICS METHODS 419



19.3.8 HMM-with-Duration via Cumulant Transition Probabilities

The transition probabilities for state “s” to remain in state “s,” a “ss” transition can be
computed as Prob(ss | slength¼ L)¼ Prob(slength� Lþ 1)/Prob(slength� L). The tran-
sition probabilities out of state “s” can have some subtleties, as shown in the following,
where the states are exon (e), intron (i), and junk (j). In this case, the transition
probabilities governing the following transitions, (jj)! (je), (ee)! (ej), (ee)! (ei),
(ii)! (ie), are computed as Prob(ei | elength¼ L)¼ Prob(elength¼ L)/Prob(elength� L)
� 40/(40þ 60) and Prob(ej | elength¼ L)¼ Prob(elength¼ L)/Prob(elength� L)� 60/
(40þ 60), where the total number of (ej) transitions is 60 and the total number of
(ei) transitions is 40. The pseudocode to track the critical length information, on a
cellular basis in the dynamic programming table, goes as follows:

(1) Maintain separate counters for the junk, exon, and intron regions.

(2) The counters are updated as

(a) The exon counter is set to 2 for a (je)! (ee) transition
(b) The exon counter gets incremented by 1 for every (ee)! (ee) transition.

(3) Prob(elength� Lþ 1) is computed as Prob(elength� Lþ 1)¼ 1�P
i¼1 . . .L

Prob(elength¼ i). Hence, we generate a list such that for each index “k4 0,”
the value 1�P

i¼1, . . ., k Prob(elength¼ i) is stored.

19.3.9 EVA Projection

TheHMMmethod is based on a stationary set of emission and transition probabilities.
Emission broadening, via amplification of the emission state variances, is a filtering
heuristic that leads to level projection that strongly preserves transition times between
major levels (see Ref. [24] for further details). This approach does not require the user
to define the number of levels (classes). This is amajor advantage compared to existing
tools that require the user to determine the levels (classes) and perform a state
projection. This allows kinetic features to be extracted with a “simple” FSA that
requires minimal tuning. One important application of the HMM-with-duration
method used in Ref. [24] includes kinetic feature extraction from EVA-projected
channel current data (the HMM-with-duration is shown to offer a critical stabilizing
capability in an example in Ref. [24]). The EVA-projected/HMMwDur processing
offers a handsoff (minimal tuning) method for extracting the mean dwell times for
various blockade states (the core kinetic information).

19.3.10 Support Vector Machines

SVMs are fast, easily trained discriminators [25, 26], for which strong discrimination
is possiblewithout the overfitting complications common to neural net discriminators
[16]. The SVM approach also encapsulates a significant amount of model fitting and
discriminatory information in the choice of kernel in the SVM, and a number of novel
kernels have been developed. In application to channel current signal analysis, there is
generally an abundance of experimental data available, and if not, the experimenter
can usually just takemore samples andmake it so. In this situation, it is appropriate to

420 NANOPORE CHEMINFORMATICS-BASED STUDIES



seek a method good at both classifying data and evaluating a confidence in the
classifications given. In this way, data that are low confidence can simply be dropped.
The structural risk minimization at the heart of the SVM method’s robustness also
provides a strong confidence measure. For this reason, SVMs are the classification
method of choice for channel current analysis as they have excellent performance at
0% data drop and as weak data are allowed to be dropped, the SVM-based approaches
far exceed the performance of most other methods known.

In Ref. [3], novel information-theoretic kernels were introduced for notably better
performance over standard kernels, with discrete probability distributions as part of
feature vector data. The use of probability vectors, and L1-norm feature vectors in
general, turns out to be a very general formulation, wherein feature extraction makes
use of signal decomposition into a complete set of separable states that can be
interpreted or represented as a probability vector (or normalized collection of such,
etc.). A probability vector formulation also provides a straightforward hand-off to the
SVM classifiers since all feature vectors have the same length with such an approach.
What this means for the SVM, however, is that geometric notions of distance are no
longer the best measure for comparing feature vectors. For probability vectors (i.e.,
discrete distributions), the best measures of similarity are the various information-
theoretic divergences: Kullback–Leibler, Renyi, and so on. By symmetrizing over the
arguments of those divergences, a rich source of kernels is obtained that works well
with the types of probabilistic data obtained, as shown in Refs. [3, 7, 27].

The SVMdiscriminators are trained by solving their Karush–Kuhn–Tucker (KKT)
relations using the sequential minimal optimization (SMO) procedure [28]. A
chunking [29, 30] variant of SMO is also employed to manage the large training
task at each SVMnode. Themulticlass SVM training generally involves thousands of
blockade signatures for each signal class.

19.3.11 Binary Support Vector Machines

Binary SVMsare based on adecision-hyperplane heuristic that incorporates structural
risk management by attempting to impose a training-instance void, or “margin,”
around the decision hyperplane [25].

Feature vectors are denoted by xik, where index i labels the M feature vectors
(1� i�M) and index k labels the N feature vector components (1� i�N). For the
binary SVM, labeling of training data is done using label variable yi¼+1 (with sign
according towhether the training instancewas from the positive or negative class). For
hyperplane separability, elements of the training set must satisfy the following
conditions: wbxib� b�þ1 for i such that yi¼þ 1, and wbxib� b��1 for yi¼�1,
for some values of the coefficients w1, . . ., wN and b (using the convention of implied
sum on repeated Greek indices). This can be written more concisely as yi(wbxib�
b)� 1� 0. Data points that satisfy the equality in the above are known as “support
vectors” (or “active constraints”).

Once training is complete, discrimination is based solely on position relative to the
discriminating hyperplane: wbxib� b¼ 0. The boundary hyperplanes on the two
classes of data are separated by a distance 2/w, known as the “margin,” where
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w2¼wbwb. By increasing the margin between the separated data as much as possible,
the optimal separating hyperplane is obtained. In the usual SVM formulation, the goal
to maximize w�1 is restated as the goal to minimize w2. The Lagrangian variational
formulation then selects an optimum defined at a saddle point of L(w,b;a)¼ (wbwb)/
2� agyg(wb xgb� b)� a0, where a0¼Sgag, ag� 0 (1� g�M). The saddle point is
obtainedbyminimizingwith respect to {w1, . . .,wN,b}andmaximizingwith respect to
{a1, . . ., aM}. If yi(wb xib-b)� 1� 0, then maximization on ai is achieved for ai¼ 0. If
yi(wbxib� b)� 1¼ 0, then there is no constraint on ai. If yi(wbxib� b)� 1< 0, there is
a constraint violation, and ai!¥. If absolute separability is possible, the last casewill
eventually be eliminated for all ai, otherwise, it is natural to limit the size of ai by some
constant upper bound, that is, max(ai)¼C, for all i. This is equivalent to another set of
inequality constraints with ai�C. Introducing sets of Lagrange multipliers, xg and mg
(1� g�M), to achieve this, the Lagrangian becomes

Lðw; b; a; x; mÞ¼ðwbwbÞ=2�ag½ygðwbxgb � bÞþ xg� þ a0 þ x0C� mgxg; where x0
¼ Sgxg; a0 ¼ Sgag and ag � 0 and xg � 0 ð1 � g � MÞ:

At the variational minimum on the {w1, . . .,wN,b} variables, wb¼ (agygxgb, and the
Lagrangian simplifies to L(a)¼ a0� (adydxdb(gygxgb)/2, with 0� ag�C (1� g�M)
and agyg¼ 0,where only thevariations thatmaximize in terms of theag remain (known
as the Wolfe Transformation). In this form, the computational task can be greatly
simplified. By introducing an expression for the discriminating hyperplane fi¼wbxib
b¼ agygxgbxib� b, the variational solution for L(a) reduces to the following set of
relations (known as the Karush–Kuhn–Tucker, or KKT, relations): (1) ai¼ 0, yifi�
1, (2) 0< ai<C, yifi¼ 1, and (3) ai¼C, yi fi� 1. When the KKT relations are
satisfied for all of the ag (with agyg¼ 0 maintained), the solution is achieved. (The
constraint agyg¼ 0 is satisfied for the initial choice of multipliers by setting the a’s
associatedwith the positive training instances to 1/N(þ) and the a’s associatedwith the
negatives to 1/N(�), where N(þ) is the number of positives and N(�) is the number of
negatives.)Once theWolfe transformation is performed, it is apparent that the training
data (support vectors, in particular, KKT class (2) above) enter into the Lagrangian
solely via the inner product xibxjb. Likewise, the discriminator fi, andKKTrelations are
also dependent on the data solely via the xibxjb inner product.

Generalizations of the SVM formulation to data-dependent inner products other
than xibxjb are possible and are usually formulated in terms of the family of symmetric
positive definite functions (reproducing kernels) satisfyingMercer’s conditions [25].

19.3.12 Binary SVM Discriminator Implementation

The SVM discriminators are trained by solving their KKT relations using the SMO
procedure [28]. The method described here follows the description of Ref. [28] and
begins by selecting a pair of Lagrange multipliers, {a1, a2}, where at least one of the
multipliers has a violation of its associatedKKTrelations (for simplicity, it is assumed
in what follows that the multipliers selected are those associated with the first and
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second feature vectors: {x1, x2}). The SMO procedure then “freezes” variations in all
but the two selected Lagrange multipliers, permitting much of the computation to be
circumvented by use of analytical reductions:

Lða1; a2; ab0�3
Þ ¼ a1 þ a2 �ða 2

1K11 þ a 2
2K22 þ 2a1a2y1y2K12Þ=2

� a1y1v1 � a2y2v2 þ ab0Ub
0 � ðab0ag0 yb0 yg0Kb

0
gÞ=2;

with b0,g0 � 3, and where Kij�K(xi, xj) and vi� ab0yb0Kib0 with b0 � 3. Due to the
constraint abyb¼ 0, we have the relation a1þ sa2¼�g, where g� y1ab0yb0 with b0 � 3
and s� y1y2. Substituting the constraint to eliminate references to a1, and performing
the variation on a2: qL(a2;ab0�3)/qa2¼ (1� s)þ Za2þ sg(K11�K22)þ sy1v1� y2v2,
where Z� (2K12�K11þK22). Since vi can be rewritten as vi¼wbxib� a1y1Ki1�
a2y2Ki2, the variational maximum qL(a2;ab0�3)/qa2¼ 0 leads to the following update
rule:

a new
2 ¼ a old

2 � y2ððwbx1b � y1Þ� ðwbx2b � y2ÞÞ=Z:

Once a new
2 is obtained, the constraint a new

2 � Cmust be reverified in conjunctionwith
the abyb¼ 0 constraint. If the L(a2;ab0�3) maximization leads to a anew2 that grows too
large, the new a2 must be “clipped” to the maximum value satisfying the constraints.
For example, if y1 „ y2, then increases in a2 are matched by increases in a1. So,
depending onwhether a2 or a1 is nearer its maximum ofC, we havemax(a2)¼ argmin
{a2þ (C� a2); a2þ (C� a1)}. Similar arguments provide the following boundary
conditions: (1) if s¼�1, max(a2)¼ argmin{a2; Cþ a2� a1} and min(a2)¼ argmax
{0; a2� a1}, and (2) if s¼ þ 1,max(a2)¼ argmin{C; a2þ a1} andmin(a2)¼ argmax
{0; a2þ a1�C}. In terms of the new anew; clipped2 , clipped as indicated above if
necessary, the new a1 becomes

a new
1 ¼ a old

1 þ sða old
2 � a new;clipped

2 Þ;

where s� y1y2 asbefore.After thenewa1 anda2 values areobtained, there still remains
the task of obtaining the new b value. If the new a1 is not “clipped,” then the update
must satisfy the nonboundary KKT relation: y1f(x1)¼ 1, that is, f new(x1)� y1¼ 0. By
relating f new to f old, the following update on b is obtained:

bnew1 ¼ b�ðf newðx1Þ� y1Þ� y1ðanew1 � aold1 ÞK11 � y2ðanew;clipped2 � aold2 ÞK12:

Ifa1 is clipped, buta2 is not, the above argument holds for thea2multiplier, and thenew
b is

bnew2 ¼ b�ðf newðx2Þ� y2Þ� y2ðanew2 � aold2 ÞK22 � y1ðanew;clipped1 � aold1 ÞK12:

CHANNEL CURRENT CHEMINFORMATICS METHODS 423



If both a1 and a2 values are clipped, then any of the b values between b
new1 and bnew2 is

acceptable and following the SMO convention, the new b is chosen to be

bnew ¼ ðbnew1 þ bnew2Þ=2:

19.3.13 SVM Kernel/Algorithm Variants

The SVMKernels that are used are based on “regularized” distances or divergences as
those used in Refs. [3, 7, 27], where regularization is achieved by exponentiating
the negative of a distance-measure squared (d2(x,y)) or a symmetrized divergence
measure (D(x,y)), the former if using a geometric heuristic for comparison of
feature vectors and the latter if using a distributional heuristic. For the Gaussian
Kernel,d2(x,y)¼Sk(xk� yk)

2; for theAbsdiffKernel,d2(x,y)¼ (Sk|xk� yk|)
1/2; and for

the symmetrized relative entropykernel,D(x,y)¼D(x || y)þD(y || x),whereD(x || y) is
the standard relative entropy.

19.3.14 SVM-External Clustering

As with the multiclass SVM discriminator implementations, the strong performance
of the binary SVM enables SVM-external as well as SVM-internal approaches to
clustering. The external-SVM clustering algorithm introduced in Ref. [27] clusters
datavectorswith noaprioriknowledge of each vector’s class. The algorithmworks by
first running a binary SVM against a data set, with each vector in the set randomly
labeled, until the SVM converges. To obtain convergence, an acceptable number of
KKT violators must be found. This is done through running the SVMon the randomly
labeled data with different numbers of allowed violators until the number of violators
allowed is near the lower bound of violators needed for the SVM to converge on the
particular data set. Choice of an appropriate kernel and an acceptable sigma valuewill
also affect convergence. After the initial convergence is achieved, the sensitivity plus
specificity will be low, likely near 1. The algorithm now improves this result by
iteratively relabeling theworstmisclassifiedvectors that haveconfidence factorvalues
beyond some threshold, followed by rerunning the SVM on the newly relabeled data
set. This continues until no more progress can be made. Progress is determined by an
increasing value of sensitivity plus specificity, hopefully nearly reaching 2. This
method provides a way to cluster data sets without prior knowledge of the data’s
clustering characteristics, or the number of clusters.

19.4 RECENT ARCHITECTURAL REFINEMENTS

19.4.1 Data Inversion

A new form of “inverted” data injection is possible when the states and quantized
emission values share the same alphabet. This new form may not have any clear
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probabilistic interpretation (use of “time-reversed” conditional probabilities or
“absorption” instead of emission perhaps) but can be clearly defined in terms of the
core data injection that occurs via the forward/backward variables, with emissions
conditional probabilities takenwith reversed conditional probabilities. Results shown
in Fig. 19.2 are part of an extensive study that consistently shows approximately 5%
improvement in accuracy (sensitivityþ specificity) with the aforementioned data
inversion (upon SVM classification), and this holds true over wide ranges of kernel
parameters and collections of feature sets in all cases.

SVM performance on the same train/test data splits, but with 2600 uncompressed
component feature vectors instead of 150 component feature vectors, offered similar
performance after drop optimization. SVM performance with Adaboost on the 2600
components (taken as naive Bayes stubs), with selection for the top 150 “experts,”
demonstrates a significant robustness to what the SVM can “learn” in the presence of
noise (some of the 2600 components have richer information, but evenmore are noise
contributors). This also validates the effectiveness with which the 150-parameter
compression was able to describe the two-state dominant blockade data found for the
nine-base-pair hairpin and other types of “toggler” blockades.

19.4.2 Automated Feature Selection Using AdaBoost

Two new methods are being pursued for automated feature selection/feature com-
pression. This is particularly important for handling the transition probabilities
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Figure 19.2 The binary classification performance using features extracted with HMM data

inversion versus HMM standard. Blockade data were extracted from channel measurements of

9ATand 9CG hairpins (both hairpins with nine base-pair stems), and the data extraction involved

either standard (std) emission data representations or inverted (inv) emission data, andwas based

on feature sets of the full 150 features, or the first 50, with the Viterbi-path level dwell time

percentages, or the second 50, the emission variances (much weaker features as expected). The

inverted data offer consistently better discriminatory performance by the SVM classifier.
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obtained by the HMM (if it has 50 states, it has 502 transition probabilities). The first
builds on the transition probability compression in other ways optimized for the
signals observed, and the second uses boosting (AdaBoost) over the individual
emission and transition probabilities (which are used to provide a pool of weak,
naïve Bayes, classifiers) to select the best features, and then use those features when
passing feature vectors to the SVM classifiers, among other things. It is found,
however, that boosting from the set of 150 features worked better than that from the
2600 naiveBayes, and boosting from the 50 features in the first groupworked best (see
Fig. 19.3). (This result is also consistent with the PCA filtering in Ref. [31], mostly
reducing the 150-feature set to the first 50 features.)

19.4.3 The Machine Learning Software Interface Project

Web-accessible machine-learning tools have been developed for general pattern
recognition tasks, with specific application to channel current analysis, kinetic
analysis, and computational genomics. The core machine learning tools are primarily
based on SVMalgorithms,HMMalgorithms, and FSAs. The groupWeb site athttp://
logos.cs.uno.edu/�nano/ provides interfaces to (1) several binary SVM variants
(with novel kernel selections and heuristics), (2) a multiclass (internal) SVM, (3) an
SVM-based clustering tool, (4) an FSA-based nanopore spike detector, (5) an HMM
channel current feature extraction tool, and (6) a kinetic feature extraction tool. The
Web site is designed usingHTMLandCGI scripts that are executed to process the data
sent when a form filled in by the user is received at theweb server—results are then e-
mailed to the address indicated by the user.

9GC vs 9TA classification results for AdaBoost vs Inv150
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Figure 19.3 Adaboost feature selection strengthens the SVM performance of the Inverted HMM

feature extraction set. Classification improvement with Adaboost taking the best 50 from the

inverted emission 150-feature set. 95% accuracy is possible for discriminating 9GC from 9TA

hairpins with no data dropped with use of Adaboost, and without Adaboosting, the accuracy is

approximately 91%.
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19.5 DISCUSSION

19.5.1 Individual Reaction Histories—Single Molecule Kinetics

Channel current-based kinetic feature extraction not only appears to be practical but
are also the next key step in the study of individual reaction histories. In essence,
binding strength (Kd) between molecules in solution, and conformational state
transitions, can be determined via channel blockade observations corresponding to
lifetimeson the different states. The ergodic hypothesis, that time averages can replace
ensemble averages, can now be explored in this context as well. Nanopore detection
promises to be a very precise method for evaluating binding strengths and observing
single-molecule conformational changes. Adaptive software techniques to manage
the complex data analysis are needed, and they are in growing demand. Recent
advances have beenmade in channel current cheminformatics to address these issues,
including new developments in distributed and unsupervised learning processes.

19.5.2 Deciphering the Transcriptome and Transcription Factor-Based
Drug Discovery

The examination of transcription factor binding to target transcription factor binding
site (TF/TFBS interactions) affords the possibility to understand, quantitatively,much
of the transcriptome. This same information, coupled with new interaction informa-
tion upon introduction of synthetic TFs (possible medicines), provides a very
powerful, directed approach to drug discovery.

19.5.3 A New Window into Understanding Antibody Function

Upon binding to antigen, a series of events are initiated by the interaction of the
antibody carboxy-terminal region with serum proteins and cellular receptors. Biolog-
ical effects resulting from the carboxy-terminal interactions include activation of the
complement cascade, binding of immune complexes by carboxy-terminal receptors
on various cells, and the induction of inflammation. Nanopore detection provides a
newway to study the binding/conformational histories of individual antibodies.Many
critical questions regarding antibody function are still unresolved, questions that can
be approached in a new way with the nanopore detector. The different antibody
binding strengths to target antigen, for example, can be ranked according to the
observed lifetimes of their bound states. Questions of great interest include, Are
allosteric changes transmitted through the molecule upon antigen binding? Can
effector function activation be observed and used to accelerate drug discovery efforts?

19.5.4 Hybrid Clustering and Scan Clustering for Indirect-Interaction
Kinetic Information

An exciting area of machine learning research is being brought to bear on the kinetic
signal decomposition of channel currents. The external-SVM approach described in
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the background andRef. [27] offers to provide one of themost powerful, unsupervised
methods for clustering. Part of the strength of the method is that it is nonparametric.
Part of theweakness is in obtaining an initial clustering. To improve on this, efforts are
underway to graft the external SVM onto an initial clustering using bisect-K-means
(that is seeded by principle direction divisive partitioning [32–34], or principle
component analysis [35], when random seeding does poorly. External-SVM cluster-
ing, along the lines of Ref. [27], may allow precise cluster regrowth by its ability to
operate on a shifting support vector structure as direct label operations (binary
“flipping”) are performed.
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