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Reduced phase space formalism for spherically symmetric geometry with a massive dust shell
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We perform a Hamiltonian reduction of spherically symmetric Einstein gravity with a thin dust shell of
positive rest mass. Three spatial topologies are considered: EucliBégnktuskal (S><R), and the spatial
topology of a diametrically identified KruskaR{P3\ {a point at infinity). For the Kruskal and®P® topologies
the reduced phase space is four dimensional, with one canonical pair associated with the shell and the other
with the geometry; the latter pair disappears if one prescribes the value of the Schwarzschild mass at an
asymptopia or at a throat. For the Euclidean topology the reduced phase space is necessarily two dimensional,
with only the canonical pair associated with the shell surviving. A time reparametrization on a two-dimensional
phase space is introduced and used to bring the shell Hamiltonians to a siardtnown form associated
with the proper time of the shell. An alternative reparametrization yields a square-root Hamiltonian that
generalizes the Hamiltonian of a test shell in Minkowski space with respect to Minkowski time. Quantization
is briefly discussed. The discrete mass spectrum that characterizes natural minisuperspace quantizations of
vacuum wormholes anHP’® geons appears to persist as the geometrical part of the mass spectrum when the
additional matter degree of freedom is addedD556-282(97)00724-9

PACS numbes): 04.20.Fy, 04.40.Nr, 04.60.Kz, 04.70.Dy

. INTRODUCTION RIP2. This last manifold is the space acquired from Kruskal
geometry by identifying diametrically opposite points on an
In classical general relativity, every three-manifold occursy + V= const slice, withU and V the usual Kruskal null
as the spatial topology of a globally hyperbolic vacuumcoordinateg1].
spacetime. In a canonical approach to quantum gravity, the A reduced phase space formalism for spherically symmet-
spatial topology is frozen, and one can ask for ground statedc vacuum Einstein gravity in four spacetime dimensions
corresponding to each topolody. has been considered by several authf?s12.? In the
Spherically symmetric minisuperspaces provide simplepresent paper we add to spherically symmetric Einstein grav-
models for the quantization of geometries with non-ity an idealized, infinitesimally thin dust shell of positive rest
Euclidean topology. The spatial topologies consistent withmass. The equations of motion for such a shell follow easily
spherical symmetry and asymptotic flatness &% the  from Israel’s junction condition formalismi32—33, and a
wormholeS?X R of the Kruskal geometry with two asymp- number of workers have proposed actions from which these
topias, and th&P® geon, a manifold with a single asympto- equations can be derivg@6—42. Our main purpose is to
pia obtained by removing a point from the compact manifoldfind an action for this system by an explicit Hamiltonian
reduction, treating both the geometry and the shell as dy-
namical, and retaining the full dynamics allowed by the

*Electronic address: friedman@thales.phys.uwm.edu choice of the spatial topology.

TOn leave of absence from Department of Physics, University of Two issues require particular care. First, as general rela-
Helsinki. Present address: Max-Planck-Instittit f@ravitations- ~ tivity iS a nonlinear theory, introducing a distributional
physik, Schlaatzweg 1, D-14473 Potsdam, Germany. Electronisource faces well-known subtletig34]. The special case of
address: louko@aei-potsdam.mpg.de a source concentrated on a hypersurface of codimension 1 is
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'Even in a theory that permits topology change, topologiesambiguous distributional interpretation, and this interpreta-
threaded by electric or magnetic flux in source-free Einstein-tion reduces to Israel's junction conditions when the source
Maxwell theory (or in higher-dimensional gravity with Kaluza- is @ pures function on the surfack34]. However, we wish to
Klein asymptotic behavigrcannot evolve to Euclidean space, if
they have a net asymptotic charge. If there is a nonsingular quantum
theory of such a system, it must allow a ground state with nonzero 2For extensions to related theories, including spherically symmet-
asymptotic charge and non-Euclidean topology. Topological geonsc Einstein-Maxwell theory and lower-dimensional dilatonic theo-
with half-integral angular momentum in a quantum theory of grav-ries, see Refs[10,13-2]. For discussions within the Euclidean
ity would similarly be unable to settle down to Euclidean topology. context, see, for example, Ref22—31] and the references therein.
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go further and write amaction principlefrom which the field Like the Jain-Schechter-Sorkin quantum-stabilized Skyrmion
equations would arise as variational equations. In such af#3], the minisuperspace geons provide an example of field
action principle one presumably needs to be able to vary theonfigurations that have quantum, but not classical ground
action with respect to both the metric and the shell variablesstates; both are field theory analogues of the quantum stabi-
with the variations remaining independent in some suitabldization of the hydrogen atom. Whether the ground state of
sense. This brings in not only the regularity properties of thedeons is an artifact of the reduction of the degrees of free-
spacetime at the shell, but also the regularity properties oflom is, of course, an open question, but the geometrical
the coordinates in which the action is written. ground state appears to persist when the shell’'s degree of
We will not find an action principle whose variational freedom is added. o _ S
equations would be fully distributionally consistent at the With one asymptotic or interior mass fixed, the implicit
shell. However, the ambiguity in our variational equationsHamiltonian we obtain prior to time reparametrization was
will be localized into the single equation that results fromfound by Kraus and Wilczek44,45 in the limit of a mass-
varying the action with respect to the shell position coordi-1€ss shell, and it could easily be found from what they
nate. When the ambiguous contribution to this equation iPresent also for the massive case. A related reduction tech-
interpreted as the average of its values on the two sides of tHéique was used earlier by Fischletral. [46] in a minisuper-
shell, as is necessitated by consistency with the rest of thgPace treatment of a bubble wall, and recently generalized by
equations, we correctly reproduce the content of Israel’&olitch and Eardley{47]. For a flat geometry interior to the
junction condition formalism. At a somewhat formal level, Shell, our proper-time Hamiltonian has been considered clas-
our action will be manifestly invariant under the Hamiltonian Sically in Ref.[36] and quantum mechanically in R¢88].
version of spacetime coordinate transformations preservinglor a flat geometry interior to the shell, quantization using
spherical symmetry. e square root Hamiltonian has been considered in Refs.
Second, one needs to choose the falloff and boundargr39’413- o o ]
conditions at the asymptopias. We shall set the asymptotic I__atln tensor indices,b, . .. indicate abstract spacetime
momenta to zero, but the values of the Schwarzschild massédices. We work in Planck unitd,=c=G=1.
at the asymptopias will be left free to emerge from the dy-
namics. Our spacelike hypersurfaces will not be asymptotidl. HAMILTONIAN FORMULATION FOR SPHERICALLY
to hypersurfaces of constant Minkowski time, but the folia- SYMMETRIC GEOMETRY WITH A DUST SHELL
tion is nevertheless asymptotically Minkowski in the relevant

sense. In particular, the generator of unit time translations at In Fh's section we set up a Hamiltonian formuIann for
the infinity is the Schwarzschild mass. spherically symmetric gravity coupled to a thin dust shell.

We shall find that the reduced phase space is four dimeni/€ P&y Special attention to the smoothness of the gravita-

sional with the Kruskal an&P® topologies, and two dimen- tional variables and to the global boundary conditions.
sional with theR® topology. With each topology, one ca- _
nonical pair is associated with the shell motion, but with the A. Bulk action

Kruskal andRIP® topologies there is also a second canonical A spherically symmetric spacetime metric can be locally
pair, associated with the dynamics of the geometry. In th&yritten in the Arnowitt-Deser-MisnefADM) form

limit where the shell is removed, this reproduces results pre-

viously obtained in the Hamiltonian vacuum theories with ds’=—N2dt>+ A?(dr+N'dt)?+R?dQ2, (2.1
the Kruskal and?P® topologies[6,7].

For the non-Euclidean topologies, the canonical pair aswheredQ? is the metric on the unit two-sphere, aNd N',
sociated with the geometry disappears if one prescribes bfx, andR are functions ot andr. Issues of smoothness and
hand the mass at one infinity in the Kruskal topology, andglobal structure will be addressed below. We denote the de-
the mass at the wormhole throat in thé2 topology. All  rivative with respect td by overdot, and the derivative with
three reduced phase spaces then become two dimensiong@spect ta by prime.
and they can be treated on an essentially equal footing. The matter consists of a thin shell of dust, with a fixed

We next introduce a formalism for reparametrizing time positive rest masm. We write the trajectory of the shell as
in a Hamiltonian theory with a two-dimensional phase spacer =(t). Denoting byN(t), N(t), A(t), andR(t) the values
Applying this formalism to our two-dimensional phase of N, N', A, andR atr=r,
spaces, we redefine the coordinate time to coincide with the
proper time of the shell and thereby obtain a Hamiltonian R(t):=R(t,x(t)), etc., (2.2
that can be given in terms of elementary functions. This
Hamiltonian is knowr{37], but the fact that it emerges from the Hamiltonian action for the shell 44,46
a minisuperspace framework is new. An alternative choice
for the coordinate time yields a Hamiltonian that generalizes N T T
to our self-gravitating shell the familiagp?+m? Hamil- SShe”:f di(pe—NVp*A~2+m?+N'p), (2.3
tonian of a spherical test shell in Minkowski space.

The paper concludes with a discussion of the prospectwith p being the momentum conjugatetoOne can think of
for quantization. Quantization of the vacuum case is revisitedhe shell as a spherically symmetric cloud of massive rela-
to emphasize choices that lead to discrete or continuous masgistic point particles.
spectra. The additional degree of freedom provided by the The Lagrangian gravitational action for the geometry
shell does not appear to qualitatively alter these choice€2.1l) is obtained by integrating the Lagrangian density
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(167) 1(P(R—K®K,,+K?) /=g over the two-sphere as the average of a discontinuous quantity over the two sides
[2,3,6,44,46,4B After A andR are replaced by their conju- ©f the shelf! All the terms under the integral in the action
gate momenta, (2.5 are well defined in the distributional sense. The most
singular contributions are the explicit matt@icontributions
. . in the constraints, and the implickfunctions inR” and ), .
TA= T N(R_ N'R"), (248 Al these & functions are multiplied by continuous functions
of r. The remaining terms are at worst discontinuous .in

A . R . The action is therefore well defined.
TR= — N(R_ N'R")— N[A—(NVA)’], (2.4b Local independent variations of the action with respect to
the gravitational and matter variables give the constraint
the Hamiltonian bulk action for the coupled system reads equations
H=0, (2.79
S§=f dt pt+f dr(maA+7gR—NH—N"H,)|,
R ' H,=0, 2.79
(2.9
I and the dynamical equations
where the super-Hamiltoniai and the supermomentut,
are given by ) Am, wg
A=N<?—F +(NrA)’, (283
_Am} mymr RR RRA’ RZ A
T R A TN Ny
_ R=—-———+N'R/, (2.8b
+\p?A 2+ m? S(r—v), (2.69 R
2 i\ 2 2
H,= R’ — A —pd(r —1). (2.60) i NP R s 2p=5(r —v)
=] -——| —
2| RZ | A i3 27—
We shall first discuss the smoothness of the gravitational A3Vp2A 2+ m?
variables, and then the boundary terms to be added to the N'RR
bulk action. B CN (2.80
A2 7TA y .

B. Smoothness

2 AW ’ ’

In the presence of a smooth matter distribution, one can . :N[Aﬂ_ WAT’R_<R ) }_(N R + (N 7g)’
assume the spacetime metric to be smo@F)( In the ide- R R
alized case of an infinitesimally thin shell, the metric can be (2.80
chosen to be continuous but not, in general, differentiable

across the she[l32—-35. In the particular case of a spheri- ) Np R

cally symmetric dust shell, Einstein’s equations imply that t=—————N', (2.8¢
the extrinsic curvature of the shell history is discontinuous A2\ p2A 24+ m?

both in its angular components and in its component along

the shell four-velocity. If the metric is taken continuous, we NAp2

must therefore accommodate discontinuitieskinand in at p= NT ‘/p2f\*2+m2+p(/NW.

! ! ryr i ~ ~
least som&of A’, N, and (N')’. We would like both the iz /7192/\,2er2

action (2.5) and its local variations to be well defined, and
such that the resulting variational equations are equivalent to
Einstein’s equations with a dust shell. _ With the exception of Eq(2.8f), all the equation2.7) and

To proceed, we assume that the gravitational variables ar® ) are well defined in a distributional serfS&Vhat needs
smooth functions of , with the exception tha¥l’, (N")’, A’
R’, m,, and g may have finite discontinuities at isolated
values ofr, and that the coordinate loci of the discontinuities 4ggcayse the constraint equations enforce smoothness of the met-
may be smooth functions of It will be shown that the (ic gutside the shell, our differentiability assumptions can probably
resulting variational principle is satisfactory in the abovepq (ejaxed.
sense, provided one of the variational equations is interpretetsta constraint Eqs2.7) contain explicits functions inr from

the matter contribution and implic# functions inR” and ), . The
R right-hand sides of Eq92.89 and (2.8b contain at worst finite
3By continuity of the metricR(t) is well defined for alk. Taking  discontinuities, and the right-hand sides of E80 and (2.8d
the total time derivative of Eq(2.2) shows thatAR= —tAR’, contain at worsts functions. This is consistent with the left-hand
whereA denotes the discontinuity across the shell. Similarlyfor  sides of Eqs(2.88—(2.8d, because the loci of nhonsmoothness in
N, andN'. Continuity of A’, N’, and (N")" would therefore imply A, R, 7, and 7z may evolve smoothly irt. Note that both the
that the extrinsic curvature of the shell history is discontinuous onlyexplicit matter § functions and the implici® functions inR” and
in its angular components. ar), are multiplied by continuous functions of

(2.8f)
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to be examined is the consistency and dynamical content of p
the well-defined equations, and the interpretation of the Amy=——=, (2.13b
single troublesome equatidg.8f). A

As a preliminary, consider the variation of the matter ac- )
tion Sne (2.3 With respect to the metric. From the definition Where we have adopted the notati@h. footnote 3

of the stress-energy tensor, )
Af:= lim [f(t+e)—f(r—¢)], (2.19

1 e—0,
5gssheII:§f V=g d* T2 8(gap), 2.9
identifying r>t (r<t) as the right(left) side of the shell.
and the equation of motiof2.8e, we find that the surface USINg Egs.(2.89 and (2.10, one finds that Eq(2.133 is

stress-energy tensor of the shfRef. [33], Eq. (21.163] equivalent to Eq(2.12. Our Hamiltonian equations away
takes the form from the shell and the Hamiltonian constraint Eg.739 at

the shell therefore form a system that is equivalent to the
correct dynamics for the shell. When these equations hold, it
Sab:—A2 uu®, (2.10  can be verified that equation E(R.13b is proportional to
4mR Eq. (2.133 by the nonsingular factoR(t+N')/N, and the
momentum constraint thus contains no new information.
Similarly, it can be verified that thé parts in Eqs(2.89 and
g.SG) reduce to identities and contain no new information.
inally, Egs.(2.89 and (2.8b contain noé functions, and

whereu? is the four-velocity of the shell, normalized in the
usual wayu?u,=—1. This confirms that the shell indeed
consists of pressureless dust, with surface energy densi

m/(47R?) and total rest mass. o _ thus no new information, at the shell.
Also, rec_all that the f_uII cont,enjc of the Elnstel_n equations  Tpe single remaining equation of motion is E8.8f. If
at the shell is encoded in Israel’s junction conditi¢pd2,33. the geometry were smooth at the shell, E§s8e and (2.8
We shall refer to the two sides of the shell as the "right-handyo 14 py construction be equivalent to the geodesic equation
side” and the “left-hand side,” in view of the Penrose dia- o the shell, as can indeed be explicitly verified. If the am-
gram in which two partial Kruskal diagrams are joined t0 p;q,0ys spatial derivative terms in E€.8f) are evaluated
e_ach other along the shell trajectory. Israel’s junction condi the left(right) side of the shell, Eq2.8f) thus implies the
tions then read geodesic equation for the shell in the geometry on the left
(right). However, these two geodesic equations are mutually
inconsistent, and the shell motion implied by the rest of the
equations is not geodesic in either of the two geometries.
Instead, the rest of the equations imply that the left-hand side
of Eq. (2.8f) is equal to theaverageof the right-hand side
over the two sides of the she(For the generalization of this
observation to nonspherical dust shells, see Exercise 21.26 in
Ref.[33].) Therefore, if the ill-defined right-hand side of Eq.
(2.8f) is given this average interpretation, our Hamiltonian
ponents of Eq(2.11) read formalism reproduces Einstein’s equations for the dust shell.
2 W We are not aware of aa priori justification of the aver-
m_ . \/ le_2M L \/(d_R _2M_— aged interpretation of the right-hand side of E2.8f). This
R R - dr R ' interpretation is merely forced on us by the rest of the varia-
(2.12  tional equations. In a strict sense, we therefore regard the
variational principle as inconsistent, and the averaged inter-
where is the shell's proper times, =1 (e_=1) if, when  pretation of Eq.(2.8f) as put in by hand. Nevertheless, we
viewed from the geometry rigftteft) of the shell, the shellis  shall proceed with this variational principle. It will be seen in
in the right-hand-side exterior region of the Kruskal diagram,Sec. Il that the Hamiltonian reduction can be carried
or if the shell is in the white-hole region and moving to the through with no apparent inconsistency.
right, or if the shell is in the black-hole region and movingto  One check on the consistency of the formalism is that the
the left. Otherwisee, =—1 (e_=—1). It can be verified Poisson brackets of our constraints can be verified to obey
that the shell motion is completely determined by the singlehe radial hypersurface deformation algep48], as in the
equation(2.12) and the vacuum Einstein equations awayabsence of the shell. If we denote h§r) and A (r) smooth
from the shell. In particular, these equations imply that thesmearing functions of compact support, the algebra has the
tangential component of Eq2.1]) is satisfied. A more ex- form
plicit discussion can be found in R4#2].
Now, away from the shell, Eq$2.7) and (2.8) are well
known to be equivalent to Einstein’s equations. At the shell,[ f dr NlH,j dr NQH} :f dr (MNG—NLNDA™2H,
the constraint$2.7) read (2.153

A /p2+ m2]\2

AR’=—T, (2.133 U drMH,,fdrNH}:fdrMMH, (2.15b

—87(Sap— 3haS) =Ko~ Kzp (2.1

wheren, is the right-pointing unit normal to the shell his-
tory, h,,=0.p—naNp is the projector to this history,
Kap=h¢,h%,Vny is the extrinsic curvature tensor, and the
signs = refer, respectively, to the right and left sides of the
shell. With Eqg. (2.10, and with Kruskal geometries of
massedM .. on the two sides of the shell, the angular com-

dR
dr




7678 FRIEDMAN, LOUKO, AND WINTERS-HILT 56

Schwarzschild masses at the two asymptopias. Using Eq.
H dr V1M, , | dr Nfz%} :j dr [NVi(NY)' (2.12), it is easy to show that the existence of two asymp-
totically flat infinities implies that both asymptotic Schwarzs-

—NY(NY)'TH, . (2.159  child masses in the classical solutions are necessarily posi-

tive. The assumptioM -.(t)>0 in Eq.(2.16) does therefore
not exclude any solutions.

The falloff (2.16) is not consistent with the conventional
We now turn to the global properties of the geometry. Infa|loffs (see, for example, Ref§6,50]) in which the hyper-
this section we take the spatial topology to be that of thesyrfaces of constamtare asymptotic to hypersurfaces of con-
extended Schwarzschild geomet8/ X R=S* {two point§,  stant Killing time when the equations of motion hold. In-
the omitted points being associated with asymptotically flalstead, the fallof{2.16) is asymptotic to the ingoing spatially
asymptopias. The spatial topologi@*\ {a point at in- flat coordinate§51—53, individually near each asymptopia.

finity} andR® will be discussed, respectively, in Secs. V andwhen M. are constants and all t®@*-terms vanish, Eq.
VI (2.16 yields the Schwarzschild metric in the ingoing spa-
At a general level, restricting the asymptotic behavior oftjally flat coordinates, separately for-0 andr<0. Our rea-
an asymptotically flat system allows one to fix the momen-son for adopting Eq2.16) is that the spatially flat gauge will
tum, angular momentum, and mass at spatial infinity. In grove useful in the Hamiltonian reduction in Sec. [44].
quantum theoretic context, to restrict in this way the |n a variational principle that does not fix the values of
asymptotic behavior of the operatdg,, and its conjugate M., the bulk action(2.5 must be amended by a boundary

momentum%ab iS equiva|ent to restricting the state Space toaCtiOI’]. With our fa.”off(216), the Spatial metric approaCheS

an eigensubspace of fixed total momentum, angular momenlatness at — + so fast that the variations & andA give

tum, or mass. In our particu|ar case of Spherica| Symmetryl:ise to no bOUndary terms from the infinities. The Only non-

the angular momentum is necessarily zero. It would be contrivial boundary term arises from integrating by parts the

sistent with spherical symmetry to allow a nonzero momenierm fdtfdr N'A(ém,)’, associated with the momentum

tum at infinity (in the classical framework, this would mean constraint. This boundary term is canceled if we add to the

allowing boosted Schwarzschild solutionsut for our pur- ~ bulk action(2.5) the boundary action

poses this freedom does not appear significant, and we shall

set the momentum at infinity to zero. We shall, however,

retain the freedom associated with the system’s total mass. Siz=— J dt (M, +M_). (2.1
We take the coordinate to have the range-o<r <o,

At the asymptopias— =, we introduce the falloff

C. Asymptopias and boundary terms

The generator of unit time translations at the infinities is

A(t,r)=1+0%(|r|~ 3275, (2.16a therefore still the Schwarzschild mass, despite the unconven-
tional falloff.
R(t,r)=|r|+O"(|r|” *27#),
(2.16b
I1l. REDUCED PHASE SPACE FORMULATION
mA(LD)=V2M L [r[+O7(|r|7#), In the absence of the shell, the Hamiltonian reduction of
(2.160 our theory with a technically different but qualitatively simi-
lar falloff at the two asymptopias was discussed in Ré¥.
R(tr)= 1 [ =4 o7 (|r| "t A) When the asymptotic masses are not fixed, it was found that
RUD 2|r| ’ the reduced phase space is two dimensional, whereas if one

(2.160  asymptotic mass is fixed, the reduced phase space has di-
mension zero. As the shell brings in one new canonical pair
but no new constraints, one expects that the reduced phase

N(t,r)=1+07(|r|7#), (2.166  space of our theory is four dimensional when the asymptotic
masses are not fixed, and two dimensional if one asymptotic
mass is fixed. In this section we shall verify this expectation

2M . by an explicit Hamiltonian reduction.
Nt =2\ O 2, yanee

(2.169 A. Gauge transformations

whereM . (t) are positive-valued functions of andg is a and the Hamiltonian reduction formalism

positive parameter that can be chosen at \@ff. indicates a In the Hamiltonian theory formulated in Sec. Il, the vari-

guantity that is bounded at infinity by a constant times itsables A,R,, ,7g,t,p) constitute a canonical chart on the

argument, with the corresponding behavior for its deriva-phase spacé, while N andN" act as Lagrange multipliers

tives. enforcing the constraints. As the Poisson bracket algebra
It is straightforward to verify that the falloff2.16 is  (2.195 of the constraints closes, we have a first class con-

consistent with the constraints and preserved in time by thetrained systerfi54].

dynamical equations. When the equations of motion hold, LetI' denote the constraint hypersurfa@?7) in S. We

M. are independent of, and their values are just the take gauge transformations to mean the transformatiods on
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generated by the constraitftdenoting the smearing func- lution to the constraint equations can thus be regarded as two
tions by Mr) and N'(r) as in Eq.(2.19, the smeared parametrized partial spacelike hypersurfaces in the two
Hamiltonian constraint transforms an initial data setKruskal spacetimes, joining appropriately at the shell. In this

(AR, 7, ,mr,t,p) €' by the time evolution associated with picture, a gauge choice means making a particular choice for
N, and the smeared momentum constraint transforms the inthese two partial spacelike hypersurfaces in the two Kruskal

tial data set by the spatial diffeomorphism associated wittspacetimes, in a way that joins appropriately at the shell and
NT. The smearing functions must fall off so fast that theis compatible with the falloff at the infinities.

transformations become trivial at the infinities and the falloff (3) To find the symplectic forme on F_ it is convenient

(2.1 is preserved. . first to find the corresponding Liouville form. Recall that on
By definition, the reduced phase spd¢econsists of the S, the Liouville form corresponding to our canonical chart

equivalence classes i under gauge transformations. The (A,R, 7, ,7r,t,p) iS

symplectic formw on S,

02=p5t+f dr(my 6\ + TRoR). (3.3
w:=5pA5t+fdr(ﬁwAAaAwwR/\éR), (3.1

R Pulling 6 back toH_yieIds onH_the Liouville form :9,_'_, and
induces a symplectic forrm onI". Here, and from now on, ’ L
6 denotes the exterior derivative on ttfenctiona) spaces in ) )
question. w on (the isomorphic open subset)df.
We wish to implement this Hamiltonian reduction, finding N view of the description of the gauge choice in st&p
- a technical point in stef8) arises from the fact that although
M .. are constants in the time evolution of a given initial data

(Z)H_: = 60y is the symplectic form ot that corresponds to

® in an explicit symplectic chart ofi. Our implementation
will consist of the following three steps. ) )

(1) Consider firstl'. At the shell, we have already seen Set, they are not constants as functionshrand their exte-
that the full content of the constraints is encoded in Eqstior derivatives may contribute to the pullback®£3.3). Put

(2.13. Away from the shell, the constraints can be solveddifferently, a generic path if" need not correspond to a

explicitly for the gravitational momenta 444,46 partial foliation of a single Kruskal geometry on either side
— of the shell.
my=RV(R'/A)?~1+2M. IR, 3.29 To complete step$2) and (3), we need to specify the

gauge. This will be described next.
A[(RIAYR'/A) +(R'/A)?>—1+M. /R]

TR= ’

V(R'/A)2—1+2M. IR

B. Gauge choice

(3.2b Our gauge choice involves taking the intrinsic metric on
the spacelike hypersurface to be flat, with the exception of
with the upper(lower) signs holding respectively for>t  certain transition regions that are eventually taken to be van-
(r<r). We have chosen the sign of the square root in Edgishingly narrow. The possible locations for the transition re-
(3.2 so as to agree with the fallofR.16). This choice will  gions depend on whether the shell trajectory is visible to the
lead to a reduction that will cover the black hole interior butright-hand-side future null infinity, the left-hand-side future
not the white hole interior. null infinity, or neither® We now make the simplifying as-
(2) To pass fronT to Ewe choose a gauge: we specify sumption that. part of the shell traj:ec.tor.y_is visible to one
— future null infinity, and we take this infinity to be on the
right. This is arguably the situation of physical interest for an
so that each point ifan open subset pfl’ has a unique observer in the asymptotically flat region.

representative itl. This defines an isomorphism betwedn Thus, fix an initial data sé& pointinI), and consider the
classical spacetime that is its time evolution. We assume that

and (the open subset pf". In order to choose the gauge in i, this spacetime, the shell trajectory intersects the right-
practice, we note that away from the shell, a pointhang-side exterior region in the Kruskal geometry right of
(AR, 7y, mg,t,p) el is an initial data set for theacuum  the shell. The shell equation of motid@.12 then implies

Einstein equations with spherical symmetry. Any vacuumy; >\ _ | and the trajectory intersects the right-hand-side
initial data set has a unique time evolution, and, byexterior region also in the Kruskal geometry left of the shell.

Birkhoff's theorem, the resulting subspacetimes left and fo|iows thate =1 on all of the trajectory, whereas, = 1
right of the shell are isometric to regions of two Kruskal -

spacetimes with the respective masbkes andM . A so-

in I a hypersurfacei that is transversal to the gauge orbits,

whenR is sufficiently large(in particular, wherR>2M .)
bute,=—-1 asR—0.

bSee, for example, Ref55]. Note that this is distinct from, al-
though closely related to, the gauge transformations that act on the®This last case occurs when,=—1 ande_=1 in Eq. (2.12.
histories on which the action is defings4,56,51. The spacetime has two bifurcation spheres, and the shell passes
"One could consider an extended phase space that cohtains! between them, remaining at all times behind the white-hole and
N" as new coordinates and their conjugateg and 7 as new  black-hole horizons of each infinit)s8]. We are grateful to Eric
momenta. We shall, however, not need this extension. Poisson for discussions on this case.
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On this spacetime, we introduce two local cha@ls,and  and we takey andl so small that (# y)p<min(2M_ t—1).
C,, as follows. 2

Suppressing the angles, let the coordinates in the hart W€ now deform, in the regions— (1+ y)p=<rp=—p and
be (t,,ry), with r;>0. The metric reads p<ri;<(1+7y)p, in a way specified below, so that the de-

formed hypersurface,, becomes a smooth, parametrized
dro+ [2M _ dt hypersurface, with a parameterthat coincides withr, for

1 r, r=(1+y)p and withr, for r<—(1+y)p. The canonical

0<r;<t—I, (3.43
dri+ ; dt;
1
(3.4b X, as the representative from the gauge equivalence class of
our original initial data.

wherel is a positive parameter. The two metrics shown in
Eq. (3.4) are the ingoing right-hand-side spatially flat charts  C. Liouville form and the reduced Hamiltonian theory
in Kruskal manifolds with the respective masdds and -~
M, [51-53. If taken individually for 0<r;<o and We now find the Liouville forméy by pulling th Liou-
—oo<t; <, each of these two metrics would cover the up-yjjle form ¢ (3.3 back to the transversal surfate This

per right half (that is, the right-hand-side exterior and the means that we need to evaluate the right-hand side of Eq.

With the domains indicated in E3.4), the combined chart Outside the transition regions|r|<(1+7)p and

is spatially flat with mas$/ _ for r;<v—1, and spatially flat —|<r<¢, our gauge reads
with massM , for r;=t. The chart in the transition region

2

ds’=—dt?+ +r2d0?,

data on, is by construction gauge equivalent to our origi-
nal initial data, and it becomes uniquely determined after we

2 specify X, in the transition regionsr|<(1+1v)p and

ds’= —dt§+ +rfd02, t<rq, t—I=<r=<rt. As our gauge choice, we take canonical data on

t—Il<r;<t will be specified below. R(r)=]r|, (3.6
Let the coordinates in the chaty, be (t,,r,), with r,<O0.
The metric reads A(r)=1, (3.6b
oM 2 with the gravitational momenta given by E®.2). With Eq.
ds?=—dtZ+| —dr,+ |27 dt,| +r3dQ? r,<0. (3.6), 4R and 6A vanish. The only contributions to the inte-
Il gral in Eq.(3.3) therefore come from the transition regions.
@. We evaluate these contributions in Appendices A and B,

specifying the gauge in the transition regions and finally
passing to the limit where the parametérand y vanish.
From Egs.(A11) and (B7), we find

We identify C, as the ingoing left-hand-side spatially flat
chart in a Kruskal manifold with maddl _, with r,— —o
giving the infinity on the left. If— o <t,<o, the metric(3.5
covers the upper left halthat is, the left-hand-side exterior

and the black hole interiprin the Penrose diagram of this On=p,op+por, 3.7
Kruskal manifold. On our spacetim€, covers the corre- \here
sponding regions left of the shell.
Now, consider our initial data set as a parametrized space- 2M _+ \/;
like hypersurface, in this spacetime. By the falloff2.16), p,i=pIN| ————=| —2V2M _p, (3.8a
3. is asymptotic at — oo to a constant; hypersurface ; in V2M _ — \/;
the chartC,, with r being asymptotic ta,. Similarly, 3., is
asymptotic at — — o to a constant, hypersurface,, in the p:=V2M_t—V2M .t
chart C,, with r being asymptotic ta,. Without loss of
generality, we can tak&, and X, to be, respectively, the t+p+ \/p2+ m2+ \/2|v|+t
hypersurface$;=0 andt,=0. We assume that; and3, +tin , (3.8b
intersect, and that they do so left of the shell, in the black t+V2M _t
hole interior in the left-hand-side Kruskal geometrfhe ] ) ]
value of R at the intersectioiwhere R=r,=—r,) is de-  With p being a solution to
noted byp. Note thatp can be regarded as a piece of gauge- m2 oM
invariant information in our initial data set. M, —M_=p?>+m?+ Z_p 1/ " * (3.9

Letio be the hypersurface consisting®f for r;=p and

3., for r,<—p. 3, is not smooth, but has a corn@ sharp Equation (3.9) has been obtained by eliminatirfgl_ from
ridge) at r;=—r,=p. We choose a positive parametgy ~ E£dS:(B3) and (B4). _
The reduction is thus complete. The functiopsi{, ,t,p)
provide a local canonical chart on the reduced phase space

This assumption is a further restriction on the initial data. Quali-I', and Eqs(3.8) and(3.9) determineM , andM _ as func-
tatively, it tells how “early” or “late” the asymptotic ends oE tions in this canonical chart. The Hamiltonian, read off from
may be with respect to each other and the shell trajectory. Eq.(2.19), is



56 REDUCED PHASE SPACE FORMALISM FOR ... 7681

h:=M_+M_, (3.10 wheret; takes values in an open interval. The spacetime
interpretation of the variable must therefore be examined
and the reduced action reads more carefully.

o Consider the char€; obtained as thé—0 limit of the
S=f dt (pyppr—h). .13 chartC, left of the shell. Denoting the coordinates@] by

. — . . T ,r1), the metric reads
As anticipated[" has dimension four. (ta.ra)

T2 M- ~ |\ 2402
D. Dynamics in the reduced theory ds?=—dti+|dry+ - dt,;| +r7dQ4 0<r;<rt.
1
For understanding the dynamical content of the reduced (3.19
theory, it is useful to introduce the new canonical chart _ _
(M_,P_ x,p), defined by Eq(3.8a and If 7 is the proper time along the shell history, we have from

Egs.(3.4b and(3.14) the relation

oM _+p

2
P :=4M_In| ——— | —4V2M_p. (3.12 2 [2M )
\/M—\/; dr?=dt;—| de+ " dt;
The new action reads - OM_ ~ \2
=dt?—|de+ v/ - dt1>.
S=f dt (P_M_+pt—h), (3.13 (3.1

where the Hamiltoniarh(t,p,M _) is determined by Egs. If we fix the hypersurfacg1=0 to coincide with thd —0
(3.8D—(3.10. In this chart, it is immediate that boM _ and  limit of the initial hypersurface; =0 for 0<r,<rt, the rela-
M, are constants of motion. It is straightforward to verify .. P ;

that the equations of motion for the shell variables aretlon_(?"l? determinest , as a funct|on- _Oﬂl and th(-e shel
equivalent to Eq(2.12, and thus yield the correct dynamics, motion, t,=t,(t). It can now be verified thap(t) is the
providedt is identified as the coordinatg in the spatially ~value of R at the sharp ridge where the hypersurface

flat chart(3.4b right of the shell. T_he two solutions of Eq. t,=t,(t) in the chart(3.14 meets the hypersurfate=t in
(3.9) for p correspond toe, =*1 in Eq. (2.12, whereas the chart(3.5). The algebra involved in this calculation ap-

e_=1 always by virtue of the global assumptions madepears not to be particularly instructive, and it will not be
above. We shall provide the key steps of this calculatioryeproduced here.

below in Sec. IV.

What remains is the spacetime interpretation of the vari-
ablep. Recall that on the initial data hypersurfatg intro-
duced in Sec. lll Bp is the value ofR at the sharp ridge As noted above, the details of our reduction relied on
where the hypersurfacé;=0 in the chartC, (3.4, certain qualitative assumptions about the shell motion. In
asymptotic to3, at r—o, meets the hypersurfate=0 in  particular, we assumed the shell trajectory to intersect the
the chartC, (3.5), asymptotic taS, atr— —o. Recall also  fight-hand-side exterior region of the Kruskal geometry right
that our Hamiltonian evolves the spacelike hypersurfaces s8f the shell. Our gauge choice, involving titegoing spa-
that at the two infinities, covered, respectively, by the chartdially flat coordinates, allows us to follow the shell trajecto-
C, andC,, we havedt; /dt=1 anddt,/dt=1. One might €S Into the black hole, but not into the white hole. A time-
therefore have thought that as our initial data evolygs) ~ reversed gauge choice, involving tbetgoingspatially flat
would be the value oR at the sharp ridge where the hyper- coordinates, would conversely allow us to follow the trajec-
surfacet, =t in the chart(3.4a meets the hypersurfate=t tories into the white hole but not into the black hole.
in the chart(3.5). However, this does not hold. The reason is [N the reduced theory3.13, the value of the canonical
that in thel—0 limit, the chartC, does not reduce to a coordinateM _ is a constant of motion. If we are only inter-
consistent chart across the shell, not even if one were t§Sted in the shell motion, we can reduce the theory further by

allow nondifferentiability: the intrinsic metric on the shell dropping the Liouville termP_M _ and regarding _ as a
history is unambiguous, but evaluating this intrinsic metricprescribed positive constant. This is arguably the theory of
from thel—0 limit of Eq. (3.43 and from Eq.(3.40 leads  physical interest for an observer who scrutinizes the shell
to mutually inconsistent expressions because the two massasotion from one asymptotically flat infinity and regards the
differ. This means that if one approaches the shell from theinterior” mass as fixed. The action then reads

two sides on the “same” constabt hypersurface, after hav-

ing first taken the limit — 0, one arrives at two different two
spheres on the shell history. The-0 limit of one constant

t, hypersurface can be interpreted as a continuous hypersur-
face in the spacetime, and this is what we utilized in thewhereh(t,p,M_) is determined by Eqs3.8H—(3.10. In
gauge choice and the evaluation of the Liouville form, butthe limit m— 0, this theory reduces to that obtained by Kraus
one cannot maintain such an interpretation for a full foliationand Wilczek[44] by a less direct Hamiltonian reduction.

E. Comments

szf dt (pe—h), (3.16
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IV. TIME REPARAMETRIZATION ~ ~

. . . _ h(g,v):=h(q,p(q,v)). (4.5
In this section we first present a general formalism for _

reparametrizing time in a Hamiltonian system with a two-The dynamics is now encoded in the statement kat,v)

dimensional phase space. We then apply this formalism t . ~ .
the reduced Eamiltonri)an theof®.16) PR ?s constant irt. The value ofh(qg,v) provides one constant

of integration, and expressirty/dt in terms of this constant
andq yields the general solution in terms of a single quadra-
ture.
Consider now the time reparametrizatiqd.2) with
Consider a Hamiltonian system with a two-dimensionalN=N(q,V). The velocitiesy=dg/dt andV=dg/dT are re-
phase spacd™={(q,p)} and a time-independent Hamil- lated by
tonian h(q,p). With respect to a time, Hamilton's equa-

A. General time-reparametrization formalism
for two-dimensional phase space

tions read v=N(q,V)V. (4.9
dg oh Using Eq.(4.§), we can define on theewvelocity space the
T % (4.139 energy function
do  oh H(g,V): = h(@,N(q,V)V). @7
dat 9q° (4.19 Provided the relatiori4.6) between the velocities is not de-

generate, the full dynamics is then encoded in the statement

Ef‘hat’l-~|(q,V) is constant inT.
We wish to find a HamiltonianH(q,P) from which

We wish to find a Hamiltonian system that generates th
equivalent dynamics with respect to a new parameter Timme
related tot by ~
H(q,V) emerges as the energy function.U{q,V) is the

dT=Ndt, (4.2 corresponding Lagrangian, we have
whereN is a prescribedpositive function of some suitable ~ L(q,V)
set of dynamical variables. We further wish this time H(Q V)=V —F5—~L@aV) (4.8
reparametrization to preserve the value of the Hamiltonian
for each solution to the equations of moti@hl). We exam- and
ine separately two cased) N is a function oI, and(2) N
is a function ofq and the new velocitw:=dq/dT. P(q,V)= ‘”—(‘3/*\/) 4.9
, 3 . .

1. N=N(q,p)

Solving Eq.(4.8) for L(q,V), we find f Eq.(4.9 that th
Suppose thaN(q,p) is a prescribed function of'. We olving Eq.(4.8) for L (q, V), we find from Eq/(4.9) that the

general solution foP(q,V) is equivalent to
replacep by a new momentun®: =P(q,p), where

PEN) _ H(q,V)

aP(q.p) N N
T—N(q,p)- 4.3

(4.10

The HamiltonianH(q,P) is obtained by invertind®(q,V)
We assume thaP(q,p) is an invertible function ofp for  for V and substituting this ifr(q,V).

eachq, with the inverseEJ(q,P). The new phase space is 3. Comments
I':={(q,P)}, and we take the Hamiltonian dn to be Our time reparametrization preserves the value of the
R Hamiltonian on each solution to the equations of motion. It
H(qg,P):=h(q,p(q,P)). (4.4 does not, however, preserve the value of the action, and it
cannot in general be thought of as a canonical transforma-
tion.

Hamilton’s equations oil” with respect to a tim@ are then
easily seen to be equivalent to E4.1), providedt andT are
related by Eq(4.2).

After N is specified, the solutions to Eqé..3) and(4.10
each contain an arbitrary additive function @f This arbi-
trariness corresponds to a canonical transformation that rede-
finesP by the addition ofthe gradient gfan arbitrary func-

2.N=N(@,V) tion
Suppose next thatl(q,V) is a prescribed function ad
and the new velocity/. 4. Example: relativistic particle
Recall that Eq(4.19 defines the velocity: =dg/dt as a in (1+1)-dimensional Minkowski space

function onI'. We assume that this function can be inverted 54 o simple example, we apply this reparametrization for-

for the momentum ap=p(q,v). We can then define on the malism to the free relativistic particle if1+1)-dimensional
velocity space the energy function Minkowski space.
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We start from the Hamiltonian dt P2M e (dt/dT)+:+\/(dt/dT)2+1—2M+/‘C

h=/pZ+m?, (4.11) dr (1-2M_ /r) ’
(4.18
which evolves the particle in the Minkowski timeWe then
have where the parametes, = £1 labels the two solutions. Us-
oh p ing Eq.(4.18 to express in terms ofdt/d 7, we can put Eq.
v=E=—=—. (4.12  (4.16 in the form
ip /p2+m2
M + M — m -~ 5
We wish to identify the new time paramef€ras the proper 2 e \(de/dr)?+1-2M , /r.
time of the particle. From Eq94.2) and (4.12 we then (4.19
obtain
As M, is a constant of motion, the shell motion is com-
m ; :
pletely determined by Eq4.19. Comparing Eq(4.19 to
=/ 2_
N=vl-v"= \/ﬁ (4.13 Eq. (2.12 shows that our reduced Hamiltonian theory has
pT+m correctly reproduced the shell motion that arises from Isra-

We can thus use the above formalism withel's junction condition formalism, with the parameter,
N(q,p)=m(p?+m?) Y2 As a solution to Eq.(4.3, we coinciding with the parametee, in Eq. (2.12. Equation
(4.19 results from squaring Eq2.12 once, in a way that
eliminates the parameter_ ; however, as_=1 by our glo-
bal assumptions, the full information in ER.12 is con-
H(qg,P)=m cost{P/m). (4.14  tained in Eq.(4.19.

Solving Eq.(4.19 for M, yields

choosels(q,p)zm arcsinhf/m). This leads to the familiar
point particle proper time Hamiltonian

B. Proper-time Hamiltonian for the self-gravitating shell

M,—M_ m

We now apply the time-reparametrization formalism of —m T V(de/d7)?+1-2M _/r. (4.20
Sec. IV A to the Hamiltonian theory3.16. Our goal is to

obtain a Hamiltonian that evolves the shell with respectto itsag pm, > M | only the positive sign for the square root in

proper time. We follow the route of Sec. IV A 2, specifying Eq. (4.20 can occur; in terms of Eq2.12), this sign is equal
the reparametrization in terms of the new velocM. will 3¢ From Eq.(4.20, the energy function on the new
be regarded as a prescribed constant throughout. velocity space reads
We first need the Hamiltoniah=M_+M_ (3.10 as a
: 2

function of the old velocityr. Using the implicit relations -~ _ —mWVEF1=2M_Je— m
(3.8b and (3.9 to evaluatedM , /dp, we find that Hamil- HEV) =M. (V) +M_=m\V +1-2M_/ 2t

ton’s equationc= dh/dp takes the form +2M _ (4.22)
- 2M where we have written, in the notation of Sec. IV A,
= - ' (419 v:=dvdr. As a particular solution to Eq4.10 we choose

/p2+m2 t
- NZr1—oM v
wherep is still implicitly given by Eq. (3.9). Solving Eq. P(r,V)=min(V+ W+ 1-2M_Tv). .22

(4.19 for p and substituting in Eq3.9) yields Inverting this forV and substituting in Eq(4.21) gives the

new Hamiltonian

M,~M_ m 1—(c+V2M, /t)V2M, /¢

= _ )
m 2t \/1_('t+ /2M+/t)2 H(t,P)=m cosKP/m)—%+M[2— ?)exp(—P/m)}
(4.16 (4.23

Equation(4.16 determinesM ., and hencé, as a function

of ¢ andr. C. Minkowski-like Hamiltonian for the self-gravitating shell

Let 7 denote the proper time of the shell. As the param- We now consider a time reparametrization that makes the
eter timet coincides with the spatially flat timé;, in the  shell Hamiltonian analogous to the Minkowski time point

metric (3.4b right of the shell, we have particle Hamiltonian(4.11), which is also the Minkowski
) time Hamiltonian for a free spherical, nongravitating dust
[2M shell in flat space. Starting from the shell proper-time Hamil-
— A2 +
dr*=dt*~| dr+ T dt) : (417 tonian (4.23, we denote the new momentum py and we

run the formalism of Sec. IV A 1 backwards with the choice
This can be solved fodt/dr as N(t,p)=m(p?+m?)~ Y2, As with the point particle example
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exterior region in this Kruskal geometry. The spacetime left
of the shell is assumed to be part of the vacuBiitf geon
spacetime described above, and to contain the throat history.
If the shell passes through the throat, it needs to cross
m2 1 itself there. We assume that such a crossing does not happen.
h(t,p)=Vp?+m°— —+M_| 2— = ({Jp*+m?°— p)}. A Cauchy surface in this spacetime has only one infinity,
2 ¢ 40 in the part right of the shell, whereas the part left of the shell
(4.24 is compact. We can therefore unambiguously regard the left-
hand side of the shell as the interior and the right-hand side
V. RP® GEON WITH A SELF-GRAVITATING SHELL as the exterior.
. . . . It is easy to adapt the Hamiltonian formalism of Sec. Il to
In this section we adapt the formalism to a shell in 8theseRP? boundary conditions. We takg, A, R, 7, and

spacetime \_N'th th_é%]P geon topo!ogy. _ 7 to be even inr andN" odd inr, with the consequence
As mentioned in the Introduction, an asymptotically flat, thatM, =M _ in the falloff (2.16). We assume>0, add to
+ - . . ’

sphericglly symmetric spacetimeM(g)s with a singlg as"  the system a second shell e —«, and finally take the
ymptopia can have spatial topolodif°\ {a point at infin- quotient of the spacetime under the isometry
ity}. We refer to an asymptotically flat spacetime with thIS( F,6,)—>(t,—r,m— 0,¢-+ ). The resulting Hamiltonian
topology, or to an asymptotically flat initial data set in such ath’e;)ry is clearly consistent in the same sense as the Kruskal-

spacetime, as aRP’® geon. The covering space of the space dtype theory of Sec. II. The action can be written as
time then has the wormhole topology of the extende

Schwarzschild geometry.

In vacuum, one can obtain a spherically symmetftie® S=S3+Sss,
geon Einstein spacetime as the quotient of Kruskal manifold
under a freely and properly discontinuously acting involutivewhereSsy is given by Eq(2.5), with ther integration extend-
ing fromr=0 tor=«, and

in Sec. IVA4, we solve Eq. (4.3 by IE’(t,p)
=msinh Y(p/m). Denoting the counterpart &f in Eq. (4.4)
by h(t,p), we obtain

(5.2

|sometry [1]. Let (M,g) be Kruskal manlfold and let

(t X,0,¢) be a chart in whicht and x are the usual
Kruskal time and space coordinatéenoted, respectively, Sys= —J dt M, . (5.3
by v andu in Ref. [33]). The isometry in question is then

~~ ~ o~ When the equations of motion hold, we recover the above
1:(t,X,0,)—>(t, =X, 7= 0,+m). (5.1 RP® Einstein spacetimes with a dust shell. The throat is lo-
cated atr=0.
As | commutes with rotations, the quotient spacetime The Hamiltonian reduction proceeds in close analogy
(M,g): —(M g)/| is spherically symmetric. InM,g), the  With that in Sec. Ill. To choose the gauge, we introduce the
analogue of the chai€; (3.4), with M_>0 now denoting
the mass in the interior. The rangergfis bounded below by
thet;-dependent throat radius, and it is the throat radius that
they have at=0 a wormhole throat at which the radius of emerges as the paramejer The transition region near the
the S reaches its minimum value. IV, g), the correspond- throat is handled as in Appendix A, but because movD in

ing constanE hypersurfaces have topology™ {a point at our action, the contribution to the Liouville form is only half
infinity}, and the throat has become a “minimum radius” of that found in Appendix A. The transition region near the

two-surface with topoloaRIP2. Awav from the throat his- Shell is handled exactly as in Appendix B. The reduced ac-
o p g}R y ~ tion is given by Eqs(3.8)—(3.11), with the exceptions that
tory, (M,g) is indistinguishable from halfsay, x>0) of  the right-hand side in the counterpart of E§.8a contains

(M, g). The Penrose diagram can be found in RR&f. Note ~ the factorz, and Eq.(3.10 is replaced by

that the throat history inNl, g) is only defined with respect

to a given foliation, while the throat history irV(,g) has a h:=M,. (5.4
coordinate invariant meaning as the trajectory of the “mini-

mum radius” RP2. The reason for this difference is that From Sec. Il it is clear that the reduced theory reproduces
does not commute with the Killing time translations on the correct equations of motion. In the classical solutions,
p(t) is the value ofR at the throat in a foliation defined as
with the chart(3.14).

constantt hypersurfaces that do not hit a singularity have
topology SZXR with two asymptotically flat infinities, and

(M,g). these Killing time translations do not descend into
globally defined isometries of\{,Q). ; . :
Consider now a spherically symmetric spacetime that hag A canonical transformaﬂoq that repla}ces the pairp()
the RP?® geon topology and solves Einstein’s equations with y (M_.P-) leads to the act|or(13.13_, with Eq. (3.10 re-
a spherical dust shell. Away from the shell, Birkhoff's theo- placed by(5.4). Dropping the ternP_M _ gives a theory in
rem still guarantees that the spacetime is locally isometric tavhich the interior masM _ is regarded as a prescribed posi-
Kruskal manifold. We assume that the spacetime right of theive constant. The time reparametrizations of Sec. IV clearly
shell is as in Sec. lll: this part of the spacetime is part ofcarry through without change: the counterparts of the Hamil-
Kruskal geometry, containing the right-hand-side Kruskal in-tonians(4.23 and (4.24) differ only in that the(constank
finity, and the shell trajectory intersects the right-hand-sideadditive term M _ is replaced byM _ .
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VI. SELF-GRAVITATING SHELL With the Kruskal topology, and no asymptotic masses
WITH R3 SPATIAL TOPOLOGY fixed, the constraints impl . =M _: =M. With the gauge

In this section we consider the spatial topold@gy choice of Sec. lll, without the shell, the reduced action reads

We start directly from the action principle. In the bulk .
action (2.5), we take G<r<oc, with the falloff (2.16 at S= f dt (p,p—h), (7.0
r—oo. The total action is given by Eq$5.2) and (5.3). At

r—0, we introduce the falloff where h=2M, and M is obtained from Eq.3.89 with

A(t,r)=Ao+0(r?), (6.19 M _ =M. Geometrically,p(t) is the value ofR at the sharp
ridge in the foliation described in Sec. Il B, without the
R(t,r)=R;r +O(r3), (6.1  shell; this ridge evolves in the black hole interior along a
history of constant Killing time. Att— —o, we have
mA(t )=, r2+0(r%), (6.19 p(t)—2M as the ridge approaches the bifurcation two-
2 sphere, but in the future the gauge breaks down at a finite
TR(t,r)= TR,T +0(rd), (6.19 value oft asp(t)— 0. With theRP3-geon topology, the only

differences are thah=M, and the right-hand side of Eq.
(3.83 contains an additional facto}. The reduced phase
space is two-dimensional in each case. These results agree
with those obtained by Kucharreduction method6,7] un-

der a falloff that is qualitatively similar but makes the con-
where Ag>0, R;>0, 7o, TRy No>0, an dN{, are func- i/lt?nnktgvr:/);ﬁietr;l;l;faces asymptotic to hypersurfaces of constant
tions oft only. It is straightforward to verify that this falloff If one choos.es to fix the mass at one infinity with the
is consistent with the constraints and preserved by the timgskal topology, the reduced theory has no degrees of free-
evolution, and no additional boundary terms in the action argjom. The same holds if one chooses to fix the mass at the
needed at =0. From Eq.(3.2 we see that in the classical jnfinity or at the throat with th& 3 geon topology. With the
solutions, the mass left of the shell must vanish, er® is 3 gpology, the reduced theory is always void.

just the coordinate singularity at the center of hyperspherical gyantizing the reduced theories with a zero-dimensional
coordinates in flat space. The classical solutions thereforg,q,ced phase space is of course trivial: the nisis a
describe a self-gravitating shell with a flat interior. The SPa-prescribedc number. Quantizing the theories with a two-

; eR3

tial topology isRR™. _ dimensional reduced phases space offers, however, several
The reduction proceeds as above, using the analogue gfyions.

the chartC, (3.4 with M_=0 andr,>0. In the region One option is to perform first a canonical transformation

r,<c—I, the initial d_ata hypersurfack, extends smoothly 5 the pair M,Py,) as in Secs. Il and V. One can then take

tor;=0, and there is no counterpart of the paramet@f  g,antum states to be described by functihéM) of the

“3 . . . o A A A A
the Kruskal andiP-geon topologies. The only contribution positive-valued configuration variable!, adopt the inner
to the Liouville form comes from the shell transition region, _—

which is handled exactly as in Appendix B but with_=0. prOd“°t<\P1|qf2>:fng W1(M)¥2(M) (or a similar in-
The reduced action is given by E¢8.16 and(5.4), where  ner product with somé/ —dependerjt weight factgrand pro-
M, is obtained from Eqg3.80 and(3.9) with M_=0.Itis = moteM into the quantum operatd that acts in the Schro
again clear from Sec. Il that this reduced theory reproducedinger picture a$4—6]
the correct dynamics. As expected, the reduced phase space
is two dimensional.

The time reparametrizations of Sec. IV carry through
without change. The counterparts of the Hamiltonigh23

and Eq.(4.24) are obtained from these formulas by simply The spectrum oM, and thus also that of the Hamiltonian

settingM _=0. In particular,(4.24) reduces to the Hamil- - . . .
tonian used in Refd39,41]. operatorh, is continuous and consists of the positive real

axis.
Another option is to take quantum states to be described
by functionsi(p) of the positive-valued “throat radiusp,

In this secti_on we dis_cuss the prospects for quantizing thedopt the inner producty | ;) =[5 u(p)dp ¥1(p)¥a(p)
reduced theories. We first review the pure vacuum case, anghere u(p) is some weight factor, and try to promote the

N(t,r)=Ng+O(r?), (6.1@

N'(t,r)=Nir+0(r3), (6.1f)

MW (M)=ME(M). (7.2

VIl. REMARKS ON QUANTIZATION

then turn to the coupled system. function M(p,p,) into an operator on this Hilbert space. As
our M(p,p,) is known only implicitly, we have not tried to
A. Mass spectrum of spherically symmetric vacuum pursue this quantization, but there seems no obvious reason
wormholes andRP® geons to expect that the spectral properties of the resulting Hamil-

In Secs. II-VI we considered the dynamics of a shelltonian operator would agree with those of the opersoin
coupled to spacetime geometry. However, the methods imEq. (7.2).
mediately adapt to spherically symmetric vacuum gravity by Indeed, quantization of spherically symmetric vacuum
simply omitting the shell. gravity was discussed in Ref12] in terms of a related
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“wormhole throat” phase spacea(p,), on which the m?
Schwarzschild mass is given by H(x,P)=m cosh(P/m)— -, (7.9
2
M(a,ps) = 1/ Pa +al. (7.3  discussed by Hecek[38]. One can adopt a Schtimger rep-
¥ 2l a resentation corresponding to configuration-space variable

te R, and Hilbert space
The configuration variabla has an interpretation as the ra-
dius of the wormhole throat, much as qurbut with a time H:=L,(R, ,rev), (7.6)
parameter that is now identified with the proper time of the
throat history™ If the Hilbert space is chosen as above with
the configuration variablg, with reasonable choices for the
weight factoru, the functionM(a,p,) can be promoted into (—1)"
a self-adjoint operator whose spectrum is bounded below and _ —al2 n.al2
purely discretd 12]. [costtP/m)= ,\Illinwt E (2n)! amr A 7.7
We regard as artificial the continuous mass spectrum aris-
ing from the quantization(7.2), because one can similarly
obtain a continuous spectrum famy dynamical system Where A=d2, H becomes a self-adjoint operatér with
whose Hamiltonian is not explicitly time dependent. For anydomain[71]
function H with nonvanishing gradient on the phase space,
one can find a local canc_)mcal_ chart_ of the form D(H)={f|f(2”>(0):0, fMel,, al n}. 7.9
(H,q5, - - - .9n:PH P2, - - - Pn), in Which H is one of the
canonical coordinates. If the rangeldfin this chart isR, ,
one can adopt a Schiimger representation with Hilbert
spacel ,(R,)®H, with H a H|Ibert space for the remaining (H, H) for a different choice ofa.] For m<1.9, H is
bounded below, and its spectrum, like that of the nonrelativ-
istic Coulomb problem, has discrete and continuous parts.
When M _>0, one expects that the Hamiltonid#.23
- can be made into a self-adjoint operator in an analogous
Hy(H,qo, ... 0n)=H#(H,q2, ... 00, (7.4 manner, and one expects the spectrum then to be bounded
below and partly discrete for small values mf However,
and its spectrum i& , . there appears to be no reason to expect that the term propor-
Ambiguities in canonical quantization are, of course, welltional to M_ would allow the spectrum to have a lower
recognized 61-63. One specific issue not addressed abovebound for large values afi. Oharu and Winters-Hilt71] are
is in the global properties of the canonical transformationscurrently examining a self-adjoint extension &f on
For example, the canonical transformation that takes thé&,(R, ,dt), with factor ordering corresponding to the choice
phase spacea(p,) to Kuchats reduced phase spaf8] is  (7.7) with a=0:
not onto: the classical dynamics in Kuclsareduced phase
space is complete, but the classical dynamics in the phase. m?2 _
space 4,p,) is not [12]. One’s attitude to such classical H=m[coshP/m)]— = —M_mc" Y exp(— P/m)]e 12
incompleteness in view of quantization may depend on what
one sees as the role of singularities in quantum gravity +2M _. (7.9
[12,64-70Q.

where« is a parameter. With the factor ordering

[Héji(:ek takesar=—1, but notes the unitary equivalence of

g’s. The Hamiltonian operatdfl can then be taken to act as
a multiplication operator,

Finally, recall that our time-reparametrization derivation
B. Quantization of shell coupled to geometry of the proper-time Hamiltoniaf4.23 assumedV _ to be a
prescribed, time-independent constant. Wihspatial topol-
ogy this assumption is automatically satisfied. With the
Kruskal andRP3-geon topologies, on the other hand, one
could ask whether it is still possible to carry out an analo-
gous time reparametrization whéh_ is a dynamical vari-
able and the phase space is four dimensional. If the answer is
affirmative, one could presumably raise anew the issues re-

We now turn to the coupled system. We restrict consid
eration to the proper-time Hamiltonigna.23).

WhenM _=0, the shell encloses a flat interior with trivial
topology, and the Hamiltoniat¥.23 takes the form corre-
sponding to a relativistic particle in a Coulomb potential,

0The HamiltonianM (a,p,) (7.3 describing the proper-time evo- garding the spectrum dfl _ that were addressed in the con-
lution of the throat was previously considered by Friedman, Redtext of the vacuum theory in Sec. VIIA. If, after the
mount and Winters-Hilf59,60 without a derivation by reduction reparametrization, the dynamics if_ still decouples from
from spherically symmetric vacuum gravity. In RdfL2], this  the dynamics of the shell as in Secs. Ill and V, one could
Hamiltonian was derived from Kuchar reduced Hamiltonian effectively separate variables by first considering the eigen-
theory[6] by a canonical transformation. A similar derivation could Y
clearly be given from the canonical paiM(P,,) of the present
paper, despite the technical differences in our falloff and that of “
Ref.[6]. M_y=M_4. (7.10

value equation foM _,
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d phase space in a way that is more geometrical and less tied to

a particular gauge. One possible avenue for this, currently

nder investigation by Hatek and Kijowski[72,73, might

~ e to generalize to the massive shell the canonical transfor-

trum of M_. mations that Kucharintroduced to simplify the vacuum
theory[6]. Work on the analogous problem with a null-dust
shell is in progres§74].

VIil. SUMMARY AND DISCUSSION More ambitiously, one would like to consider systems

In this paper we have considered the Hamiltonian dynam‘-"’ith matter that is more interesting than a dust shell. The
ics of spherically symmetric spacetimes that contain an ide€@nonical formulation of Einstein gravity coupled tacan-
alized, infinitesimally thin massive dust shell. We consideredinuous distribution of massive or null dust has been dis-
the Kruskal-like spatial topolog§?x R, the R3-geon spa- cussed, respectively, in Ref&5,76. For the canonical for-

tial topology RP3\ {a point at infinity, and the Euclidean mulation in the presence of other types o_f fluids_, see,.for
spatial topologyR®. The variational equations that arose example, Ref[77] and the references therein. A discussion

from the unreduced Hamiltonian action were not strictly con-_Of the difficulties involved_with_sph_erica_lly symmetric grav-
coupled to a scalar field is given in Refs/8,79. A

sistent in a distributional sense, but we were able to Iocalizéw S - .
the ambiguity into the single equation that arises by varyingf{j'scus.Slon in the context of a dilatonic black hole can be
the action with respect to the shell position. When the amiound in Ref.[80].

biguous contribution to this equation was interpreted as the

For each eigenspace &n,, the shell Hamiltonian woul
then have the form4.23 with a c-numberM_, and the
character of the total spectrum would depend on the spen’é—

average of its values on the two sides of the shell, we cor- ACKNOWLEDGMENTS
rectly reproduced the content of Israel’s junction condition v \would like to thank Paul Branoff Valery Frolov, Petr
formalism. ' ’

W ; 4 a Hamiltoni duction by adopti Hajicek, Jerzy Kijowski, Karel Kuchadarmo M&ela, Char-
€ periormed a amlton!an re .uctlon y a o.ptlng Qjig Misner, Eric Poisson, lan Redmount, Rafael Sorkin, and
gauge with piecewise flat spatial sections, and passing to tI"\§ernard Whiting for helpful discussions. This work was sup-

limit in which the interpolating transition regions became ported in part by NSF Grant Nos. PHY-94-21849 and PHY-
vanishingly narrow. The constraints could then be explicitlyge_ 77740 '

solved. For the Kruskal an®’® topologies the reduced
phase space was four dimensional, with one canonical pair
closely associated with the shell motion and the other pair
with the dynamics of the geometry. In the limit where the |n this appendix we specify the gauge in the ridge transi-
shell is not present, this correctly reproduced previous resultgon region|r|<(1+ vy)p, and evaluate the contribution from
for spherically symmetric vacuum geometries. Retaining thehijs region to the integral on the right-hand side of B3
shell but prescribing by hand one asymptotic mass for then the limit y—O0.
Kruskal topology, and the interior mass for thé* topol-

ogy, we recovered theories whose reduced phase space was

two dimensional, with just the canonical pair associated with ) ) .
the shell motion surviving. For th&® topology, the interior 10 Specify the gauge in the region <(1+y)p, we con-
mass necessarily vanishes, and we only obtained a twduder the claiswal spacetime of Sec. Il B, and the spacelike
dimensional phase space, with the single canonical pair dewpersurfac&, in this spacetime. The pat|<(1+ vy)p of

scribing the shell motion. z . . .
For each of the three spatial topologies, we time_thes in the black-hole region of the Kruskal spacetime left

. - >t : . f the shell.
reparametrized the dynamics in the two-dimensional pha58 Let h'E—R be a smooth function such that

space that describes the shell motion with fixed interior
mass. With one choice for the reparametrization, we recov-
ered a previously known Hamiltonian that evolves the shell h(x)=[
with respect to its proper time. With another choice, we re-

covered a Hamiltonian analogous to the square-root Hamil-

tonian of a spherical test shell in Minkowski space. Finally,and d®h/dx*>0 for 0<x<1. We write h{"(x)
we briefly discussed the spectra that would be expected to=d"h(x)/dx".

emerge in different approaches of canonically quantizing the For [r|<(1+ y)p, we seek a gauge in the form
theories.

APPENDIX A: RIDGE TRANSITION REGION

1. Gauge choice

0, x<0

Al
x—3, x=1, (A1)

Our results provide a robust description of the reduced P 1 Ir[—p
Hamiltonian dynamics of a spherically symmetric dust shell A(r)=(1-AghV p Ao, (A23)
coupled to gravity, in the region of the reduced phase space
that is covered by our piecewise spatially flat gauge. While [r|—p L
this gauge is not global, one can argue that this gauge and its R(r)= J’h( +1+37|p, (A2b)

time-inverted counterpart cover the region of the reduced

phase space that is of interest to an observer who scrutinizeghere A, is a positive parameter. In the subregiph<p,
the shell motion from one asymptotically flat infinity. What =
remains open, however, is the global structure of the reduce
phase space. One would also like to describe the reduce®=(1+37y)p, and the proper distance &y, is Adr. The

e radius of the two-sphere is constant ang,
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subregionsp<|r|<(1+y)p interpolate smoothly between where 0<R<2M _, R decreases to the future, and we take
this constant radius gauge and the spatially flat ga@d®. T to increase to the right. The transformation from E&3)

Note thatA(r)>0, and (1+%y)p<R<(1+y)p. to the chartC, of Sec. Ill B reads

Recall from Sec. 1l B that (* y)p<2M _. Equations
(3.2) thus yield a real-valued solution fer, and g for all V2M_—r,
of |[r|<(1+ y)p. The gaugdA2) therefore specifies a space- 1= t1~2V2ZM_r;=2M_In 2M_+ 1, + const,
like hypersurface in an interior Kruskal geometry with mass N ! (Ada)
M_, with the ends atR=(1+7y)p. What remains is to
choose the parametdr, in Eq. (A2a) so that this hypersur- R=r, (A4b)

face precisely fits between the poinft$=(1+ y)p.
In the curvature coordinated (R) in the black-hole inte- R _
rior, the metric reads As our (prospectivg deformation(A2) of X4 to X is sym-

metric around =0, the value ofl atr=0 on2 is the same

2M _
_ 2 2 2 ~ —_
R 1)dT RO, as the value of at the unsmoothed ridge &. On 3, we
(A3)  thus have

2M _ -1
dsz=—(T—1) dR*+

(VaM_=p)(V2M_+ (1 + y)p)
(V2M_+ Vo (VoM _ Vit mp) |

(A5)

Tre1spp—Tre0=2V2M _p—2V2M_(1+y)p+2M_In

On the other hand, from E@80) of Ref.[6] we have As we have noted, the gauga?) for [r|<(1+ y)p joins
smoothly to the spatially flat gauge outside this interval, and

 Amy (A6) the expressions given ifA2) are in fact valid for all of

“2M_—R° —oo<r<t—|. The differentialséA (r) and éR(r) therefore
contain noé functions inr at|r|=(1+v)p, and it is suffi-

Integrating Eq.(A6) from r=0 to r=(1+1vy)p, with 7,  cient to consider the contributions fronfr|<p and

given by Eq.(3.29, and equating the result to EGAS),  p<|r|<(1+y)p.

gives a relation that implicitly determines, in terms of For|r|<p, we haveh=h")=0. EquationgA2) and(A7)
- _ yield 6A=0(y) and 6R=0(1), and Egs. (3.2) yield

M- P and Y- By the symmetry ot groundr—O, the 7,=0(1) and7r=0(y). The contribution to Eq(3.3) is

relation obtained by similarly comparing, - _(;1,), to thereforeO( y)

T,-g, Using the char€,, contains exactly the same informa- ’ ;

tion. This completes the gauge choice. Suppose thep=r<(1+y)p. We now obtain

T/

We shall below be interested in the limit of small In h®
this limit, the relation determining\, admits a power series oA =— Yo op+0(1), (A8a)
expansion iny. The result is
R=(1-hP)gp+0(y), (A8b)
Y
Ag=———+0(»?), (A7) ma=pV(R'IA)°—1+2M_/R+0O(y), (A8c)
2\1—p/(2M)
p(R'IA)

whereO stands for ay-dependent quantity that is bounded TR= +0(1), (A8d)

by a constant times its argument. VR'IA)2—1+42M_ /R

5 Liouville form where the argument of and its derivatives is always

' (r—p)/yp. Note that the first term in EqA8d) is O(y ™ 1).

We now evaluate the contribution to the integral in the For fdr 7, 8A, changing the integration variable from
Liouville form (3.3) from |r|<(1+ v)p, in the limit y—O0. to x:=(r—p)/yp gives

(1+y)p 1
f dr 7TA5A=—p5pf dx h2(x)V(R'/A)?>—1+2M_/R+0O(y)
p 0

=—\2M_p 5ledx h?(x)+o0(1)
0
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=—\2M_p dp+o(1), (A9)

where o(1) stands for a y-dependent quantity that goes to zero 3s~0. We have used the fact that

V(R'/A)?°—14+2M_/R—+2M _/p pointwise inx as y—0, and taken the limit under the integral by dominated conver-
gence.

For fdr mgréR, the assumptiom®>0 allows us to change the integration variable froro u:=R’/A. We obtain

+0(y)

(1+y)p (1+y)p dr (R'/A)’(1—hW)
f r mrOR=p pf

b » J(RIIA)Z-1+2M_/R

1 du(1—h®)
=p 5pf +0(y)
o J(R'/A)2—1+2M_/R

1 du
=p SpJ +0(1)

0 Vu?=14+2M_/p

2M_+p
V2M_—p

We have used the facts thafR'/A)?—1+2M _ /R— Ju?—1+2M_/p andh®=uA [1—u(1—Ay)] *—0 pointwise inu
asy—0, and taken the limit under the integral by dominated convergence.

Adding the identical contributions from the regien(1+ y) p<r < -—p, we find that the total contribution to the Liouville
form (3.3) from the ridge transition regiofr|<(1+ y)p is

1
=—In
2

) p dp+0o(1). (A10)

2M_+\/;)
m —2V2M _p

dp+o(1). (A11)

(1+y)p
J’ dr (7TA5A+7TR5R)=[p|n

—(1+y)p

APPENDIX B: SHELL TRANSITION REGION Outside the shell transition region-1<r=<rt, this clearly
In this appendix we specify the gauge in the shell transi29'es .W'th th_e s_patlally flgt gauga.6. To show that the
. . oo gauge is admissible, we first note that for|<r <, the
tion regiont—I=<r=<rt, and evaluate the contribution from

. 4 . . . constraints are solved by the gravitational momenta given by
}rr:lfhreeﬁlrgir: Ito_)tge integral on the right-hand side of B3 Eqg. (3.2). At the shell, the Hamiltonian constrai(®2.133 is

identically satisfied. The momentum constrgiatl3bh at the
) shell reads, using Ed3.23,
1. Gauge choice
_ N2_ _
To specify the gauge in the regian-1<r<t, we again p=tJ(RL)*=1+2M_/t—2M,, (B3)
consider the classical spacetime of Sec. Il B, and the spacgnere Eq.(B2b) gives

like hypersurface, in this spacetime. The part-I<r<rt

1+ p?+m?
of 2 lies in the Kruskal spacetime left of the shell. Rsz—. (B4)
Let f:R—R be defined by t
1) The constraints can therefore be solved both at the shell and
F(x): = X e , xe(0,1), |y AWy from the shell, and the gauge is thus admissible. The
"0, xe(0,1). gauge is smooth everywhere except at the shell, and at the

shell it is consistent with the regularity assumptions of Sec.
We write f(M(x): =d"f(x)/dx". f is continuous everywhere, |I.
and smooth except at=0, with fH)(x)—1 asx—0, and

f((x)—0 asx—0_. Note thatf(?(x)—0 asx—0. . 2. Liouville form
For (1+ y)p<r <, we choose the gauge We now evaluate the contribution to the integral in the
Liouville form (3.3) from t—I<r<v, in the limit| —0.
A=1, (B2a)

As the gaugdB2) is smooth for (I y)p<r<w except
— at the shell, the differential8A (r) andéR(r) do not contain
R=r—|\/p +m f(f_r) (B2b) 6 functions inr except possibly at=t. Equation(B23a)

’ shows thatA (r) =0 everywhere. It is therefore sufficient to
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consider separatelgrdR for t—1<r<t, and theé function
contribution tomgréR atr=r.
Fort—I<r<x, Eq.(B2b) gives

2+m2
Ru:1+i£77——fﬂh (B53)

v 2+m2
R"=—~Jiﬁ;—-ﬂa, (B5b)
oR=(1-R")&+0(), (B50)

f dr WRSR:t&f
el “IJR'2—142M _ /¢

:t&fR-
1
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where the argument dfand its derivatives ist(-r)/l. From
Eqg. (3.2b we have

tR”

VR'2—1+42M_ /¢

where we have used the observatioR=0O(l"!) and
R=t+0O(l). Note that the first term in EqB6) is O(l ).
We thus obtain, changing the integration variable frono
v:i=R’,

TR= +0(1), (B6)

dr R"(1-R")

+0(l)

dv (1-v)

+0O(1)

Vu2—1+2M_/x

=| V2M_t—V2M  t—p

+1tn

where we have used E(4) for R’ .
What remains is thé function in 6R atr=t. From Eq.
(B2b) we have

I\Vp2+m? &
OR=— pf S(r—r)
+ (nondistributional function ofr). (B8)
From Eq.(3.2b, we have

TR=3\2M, I, (B9a)

~ (p+V2Mt)2—M_t

TR — ’

R t(p+V2M, 1)

(B9b)

t+p+ \/p2+ m2+ \/2M+t

se+0(), (B7)

t+V2M_t

where we have used EB4) and the fact thaR” =0. As 7

is not continuous at=rt, the productrgzéR is not defined as

a distribution, and the contribution to the Liouville form is
ambiguous. However, asy are both of order 1, and thé
function in éR (B8) is O(l), we argue that the ambiguous
contribution can be taken to vanish in the linhit0. It is
seen in the main text that this leads to a reduced Hamiltonian
system that reproduces the correct dynamics.

The ambiguity inmgdR appears to have the same origin
as the ambiguity of the equation of moti¢2.8f) in the un-
reduced formalism: both involve varying the action with re-
spect tor. Note that if the functiorf had been chosen so that
f®(x)-+£0 asx—0,, R” and m; would be nonvanishing
and proportional td %, and the above argument for the van-
ishing of the ambiguity in the limit—0 would not apply.
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