
Distributed SVM Learning and Support Vector Reduction

Stephen Winters-Hilt1,2 * and Kenneth Armond Jr.1

1Department of Computer Science, University of New Orleans, New Orleans, LA 70148
2The Research Institute for Children, Children’s Hospital, New Orleans, LA 70118

* corresponding author: winters@cs.uno.edu

Email addresses:

SWH: winters@cs.uno.edu
KA: kcarmond@uno.edu

Abstract

Background
Support Vector Machines (SVMs) are used for a growing number of applications. A
fundamental constraint on SVM learning is the management of the training set. This is
because the order of computations during the learning process typically goes as the
square of the size of the training set. For the 150-component feature data examined here,
training sets of 1000 (500 positives and 500 negatives, for example) can be managed on a
PC without hard-drive I/O thrashing. Training sets of 10,000 or more, however, can’t be
managed with a single PC-based resource. For this reason most SVM implementations
must contend with some kind of chunking process to learn parts of the data at a time.
Results
Two sets of binary SVM training results are examined. These results show that chunk
aliasing and outlier accumulation may pose problems for distributed SVM learning. The
results also present new methods and how they offer a stable learning solution to these
problems at minimal cost. One of those methods extends the learning process with
modified alpha-selection heuristics that enable a support-vector reduction phase.
Conclusion
What is not as commonly discussed about distributed SVM learning are the details of the
distributed, or approximately parallel, chunk processing methods. The distributed SVM
described here is implemented using Java RMI, and is developed to run on a network of
multi-core processor computers.

Introduction and Background
Support Vector Machines [1] are discriminators that use structural risk minimization to
find a decision hyperplane with a maximum margin between separate groupings of
feature vectors. When SVMs were created in 1995, a quadratic programming algorithm
was used [2]. This was slow and only small datasets could be run with them. In 1998,
Platt created sequential minimal optimization (SMO), which is an algorithm that uses
Lagrange multipliers to bypass having to use a quadratic algorithm [3]. The SMO SVM
iterates through the dataset comparing and updating the Lagrange multipliers (alphas)
two at a time. This simplification into smaller steps provides a significant increase in
speed. This did much to advance the feasibility and ease-of-use of SVM classifiers. There
has still been the key constraint, however, of computing the kernel matrix corresponding
to the training data. In the Background sections that follow we introduce (i) the standard
binary SVM; (ii) kernel variants; (iii) alpha-selection-variants (including simple
chunking); and (iv) previous work with a multiclass SVM formulation. The work with the
multiclass formulation is included because it demonstrates the importance of managing
and tracking SV’s (and other feature vector categories) during the learning process. The
importance of tracking the SV’s during the learning process will be revisited in the
distributed learning results presented in the Results section..

Binary Support Vector Machines
In the binary SVM implementation described in what follows we follow the notation and
conventions used previously [4]. Feature vectors are denoted by xik, where index i labels
the feature vectors (1 = i = M) and index k labels the N feature vector components (1 = k
= N). For the binary SVM, labeling of training data is done using label variable yi = ±1
(with sign according to whether the training instance was from the positive or negative
class). For hyperplane separability, elements of the training set must satisfy the
following conditions: wß xiß - b = +1 for i such that yi = +1, and wß xiß - b = -1 for yi = -1,
for some values of the coefficients w1,..., wN, and b (using the convention of implied sum
on repeated Greek indices). This can be written more concisely as: yi(wß xiß - b) - 1 = 0.
Data points that satisfy the equality in the above are known as "support vectors" (or
"active constraints").

Once training is complete, discrimination is based solely on position relative to
the discriminating hyperplane: wß xiß - b = 0. The boundary hyperplanes on the two
classes of data are separated by a distance 2/w, known as the "margin," where w2 = wßwß.
By increasing the margin between the separated data as much as possible the optimal
separating hyperplane is obtained. In the usual SVM formulation, the goal to maximize
w-1 is restated as the goal to minimize w2. The Lagrangian variational formulation then
selects an optimum defined at a saddle point of

0 b) ww(
2

ww
 b;(w, ααα γββγγ

ββ −−− =) yL ,

where ∑=
γ

γαα0 , 0≥γα)1(M≤≤ γ

The saddle point is obtained by minimizing with respect to {w1,...,wN,b} and maximizing
with respect to {a1, ..., aM}. If yi(wß xiß - b) - 1 = 0, then maximization on a i is achieved
for a i = 0. If yi(wß xiß - b) - 1 = 0, then there is no constraint on a i. If yi(wß xiß - b) - 1 < 0,

there is a constraint violation, and a i ? 8 . If absolute separability is possible, the last
case will eventually be eliminated for all a i, otherwise it is natural to limit the size of a i

by some constant upper bound, i.e., max(a i) = C, for all i. This is equivalent to another
set of inequality constraints with a i = C. Introducing sets of Lagrange multipliers, ?? and
µ?(1 = ? = M), to achieve this, the Lagrangian becomes:

γγγγββγγ
ββ ξµξαξαµξα −+++−− =) CyL 00] b) xw([

2

ww
,, b;(w,

where ∑=
γ

γξξ0 , ∑=
γ

γαα0 and 0≥γα and 0≥ξξ)1(M≤≤ γ

At the variational minimum on the {w1,...,wN,b} variables, wß = a?y?x?ß, and the
Lagrangian simplifies to:

2
xyxy

(0
γβγγδβδδ αα

αα − =)L ,

with C≤≤ γα0)1(M≤≤ γ and 0=γγα y ,
where only the variations that maximize in terms of the a? remain (known as the Wolfe
Transformation). In this form the computational task can be greatly simplified. By
introducing an expression for the discriminating hyperplane: fi = wß xiß - b = a?y?x?ßxiß -
b, the variational solution for L(a) reduces to the following set of relations (known as the
Karush-Kuhn-Tucker, or KKT, relations):

(i) a i = 0 , yifi = 1
(ii) 0 < a i < C , yifi = 1
(iii) a i = C , yifi = 1

When the KKT relations are satisfied for all of the a? (with a?y? = 0 maintained) the
solution is achieved. The constraint a?y? = 0 is satisfied for the initial choice of
multipliers by setting the a's associated with the positive training instances to 1/N(+) and
the a's associated with the negatives to 1/N(-), where N(+) is the number of positives and
N(-) is the number of negatives. Once the Wolfe transformation is performed it is
apparent that the training data (support vectors in particular, KKT class (ii) above) enter
into the Lagrangian solely via the inner product xißxjß. Likewise, the discriminator fi, and
KKT relations, are also dependent on the data solely via the xißxjß inner product.

Generalization of the SVM formulation to data-dependent inner products other than xißxjß
are possible and are usually formulated in terms of the family of symmetric positive
definite functions (reproducing kernels) satisfying Mercer's conditions [1].

The SVM discriminators are trained by solving their KKT relations using the SMO
procedure of [5]. The method described here follows the description of [5] and begins by
selecting a pair of Lagrange multipliers, {a1,a2}, where at least one of the multipliers has
a violation of its associated KKT relations. For simplicity it is assumed in what follows
that the multipliers selected are those associated with the first and second feature vectors:
{x1,x2}. The SMO procedure then "freezes" variations in all but the two selected
Lagrange multipliers, permitting much of the computation to be circumvented by use of
analytical reductions:

222111
12212122

2
211

2
1

213'21
2

)K2KK(
 ;,(vyvy

yy
L αα

αααα
ααααα β −−

++
−+ =)≥

2
'''''

''
yy Ky

U βββ
ββ

αα
α −+ ,

with ß',?' = 3, and where Kij = K(xi, xj), and vi = aß'yß'Kiß' with ß' = 3. Due to the constraint
aßyß = 0, we have the relation: a1 + sa2 = -?, where ? = y1aß'yß' with ß' = 3 and s = y1y2.
Substituting the constraint to eliminate references to a1, and performing the variation on
a2: ?L (a2 ; aß' = 3)/?a2 = (1 - s) + ?a2 + s?(K11 - K22) + sy1v1 – y2v2, where ? = (2K12 -
K11 - K22). Since vi can be rewritten as vi = wßxiß - a1y1Ki1 - a2y2Ki2, the variational
maximum ?L (a2 ; aß' = 3)/?a2 = 0 leads to the following update rule:

η
αα ββββ))yx()yx((22112

22

−−−
− =

wwyoldnew

Once a2
new is obtained, the constraint a2

new = C must be re-verified in conjunction with
the aßyß = 0 constraint. If the L (a2;aß' = 3) maximization leads to a a2 new that grows too
large, the new a2 must be "clipped" to the maximum value satisfying the constraints. For
example, if y1 ? y2, then increases in a2 are matched by increases in a1. So, depending on
whether a2 or a1 is nearer its maximum of C, we have max (a2) = argmin{a2 + (C - a2) ;
a2 + (C - a1)}. Similar arguments provide the following boundary conditions:
(i) if s = -1, max(a2) = argmin{a2 ; C + a2 - a1}, and min(a2) = argmax{0 ; a2 - a1}, and
(ii) if s = +1, max(a2) = argmin{C ; a2 + a1}, and min(a2) = argmax{0 ; a2 + a1 - C}.
In terms of the new a2

new, clipped, clipped as indicated above if necessary, the new a1
becomes:

)(,
2211

clippednewoldoldnew s αααα + = ,
where s = y1y2 as before. After the new a1 and a2 values are obtained there still remains
the task of obtaining the new b value. If the new a1 is not "clipped" then the update must
satisfy the non-boundary KKT relation: y1f(x1) = 1, i.e., fnew (x1) - y1 = 0. By relating fnew
to fold the following update on b is obtained:

122
,

2211111111)()())((KyKyyxfbb oldclippednewoldnewnewnew αααα −− −−−− =

If a1 is clipped but a2 is not, the above argument holds for the a2 multiplier and the new b
is:

121
,

1122222222)()())((KyKyyxfbb oldclippednewoldnewnewnew αααα −− −−−− =
If both a1 and a2 values are clipped then we don’t have a unique solution for b. The Platt
convention was to take:

2
21
newnew

new bb
b

+
 =

and this works well much of the time. Alternatively, Keerthi [6] has devised an alternate
formulation without this weakness, as have Crammer and Singer [7], with the latter
described in the multiclass SVM section. Perhaps just as good as any exact solution for
‘b’ in the double-clipped scenario is to manage this special case by rejecting the update
and picking a new pair of alphas to update (in this way only unique ‘b’ updates are
made). Alpha-selection variants are briefly discussed in the Section after next.

Kernel Variants
The SVM Kernels of interest are “regularized” distances or divergences, where they are
regularized if in the form of an exponential with argument the negative of some distance-
measure squared (d2(x,y)) or symmetrized divergence measure (D(x,y)), the former if
using a geometric heuristic for comparison of feature vectors, the latter if using a
distributional heuristic. The Gaussian and Absdiff kernels are regularized distances in the
form of an exponential distance measure (d2(x,y)). The Gaussian kernel (d2(x,y) = Sk(xk -
yk)

2) is common since it tends to produce good results when used with a wide variety of
datasets. The Absdiff (d2(x,y) = Sk(|xk - yk|)1/2) and Sentropic (D(x,y) = D(x||y) + D(y||x))
Kernels [4] tend to work better with all of the datasets considered here and in other tests
not shown. The Sentropic kernel is based on a regularized information divergence
(D(x,y)) instead of a geometric distance.

Alpha-selection Variants and previous Chunking efforts
The SVM algorithm variants are only briefly described here. In the standard Platt SMO
algorithm, η=2*K12-K11-K22, and speedup variations are described to avoid calculation
of this value entirely. A middle ground is sought with the following definition “η
=2*K12-2; If (η >=0) { η = -1;}” (in [4], where underflow handling and other details
differ slightly).

SVM chunking provides an alternative method to running a typical SVM on a dataset by
breaking up the training data and running the SVM on smaller chunks of data. In the
chunking process feature vectors associated with strong data points are retained from
chunk to chunk, while weak data points are discarded. See Methods for specifics on the
chunking methods employed here.

Zanghirati and Zanni [8] developed the variable projection method (VPM) for training
SVMs in parallel. This method is based off of Joachim's SVM light decomposition
techniques [9] which delve further into the inner workings of the SMO algorithm [3,5].
First, the feature vector indices are divided into two categories, the free and fixed sets
based upon their alphas (Lagrange multipliers). The free set represents the KKT violators
which need to be further optimized while the fixed set is the alphas that already fulfill the
KKT equations. An alpha variable from each set is used to solve each quadratic sub
problem in order to optimize the free set alphas until convergence. VPM provides a
parallel solution to computing the kernel matrix which is the most memory intensive part
of the SVM. The kernel calculations are spread among several processing elements and
the rows of the matrix are spread and usually duplicated across the memory of those
processing elements. Since the rows are duplicated, they must be synchronized after each
local computation. VPM is implemented using standard C and MPI communication
routines.

Hans Peter Graf et al. [10] developed the Cascade SVM to parallelize SVMs. This
method begins by breaking the large dataset into chunks. The SVM is run on each
separate chunk in the first layer. When the SVMs have all converged, new chunks are
created from the resulting support vectors from the pairs of first layer chunks which make

up the second layer of chunks. This occurs until a final chunk is reached. The final set of
support vectors is then fed back into each first layer chunk. If further optimization is
possible and needed, the entire process is rerun until the global optimum is met. This
method seems intuitive, but after testing we have found that passing 100% of support
vectors down to the next set of chunks, without also passing non support vectors or using
the SVR method, typically results in systematic convergence failure (with the various
150-component DNA feature datasets examined). The data run never finishes, in other
words, since it cannot sufficiently reduce the support vectors to converge (see Fig. 1).
The weakness of the method, not apparent at first sight, is not simply that the SVs from
different chunks might be sufficiently different to pose complications. The added subtlety
is to prevent the accumulation of outliers during the distributed learning/merging of the
SVM with chunking.

Multiclass SVM Methods
Training speedup with large multiclass datasets has been explored in prior work [4]. In
those efforts it was found that sometimes convergence itself can be weak purely because
time is repeatedly wasted on alpha updates that don’t reduce the penalty set (the set of
alphas at the max alpha boundary). This result foreshadows developments on SV
handling presented in the Results, so it is described in sufficient detail to see how penalty
set members are discerned and decisions made accordingly.

SVM-external Multiclass: Binary SVM Decision Tree
The SVM binary discriminator offers high performance and is very robust in the presence
of noise. This allows a variety of reductionist multiclass approaches, where each
reduction is a binary classification (for classifying cards by suit, maybe classify as red or
black first, then as heart or diamond for red and spade or club for black, for example).
The SVM Decision Tree is one such approach used extensively with the datasets
examined [11], and a collection of them (a SVM Decision Forest) can be used to avoid
problems with throughput biasing. Alternatively, the variational formalism can be
modified to perform a multi-hyperplane optimization situation for a direct multiclass
solution [7,12,13], as is described next.

SVM-Internal Multiclass: Multi-hyperplane Optimization
In [4] we make use of a variant of a formulation by Crammer & Singer [7], where there
are ‘k’ classes and hence ‘k’ linear decision functions – a description of their approach is
given first briefly. For a given input ‘x’, the output vector corresponds to the output from
each of these decision functions. The class of the largest element of the output vector
gives the class of ‘x’. Each decision function is given by: fm(x) = wm.x + bm for all m =
(1,2,…,k). If yi is the class of the input xi, then for each input data point, the
misclassification error is defined as follows: maxm{fm(xi) + 1 – di

m} - fyi(xi), where di
m is

1 if m = yi and 0 if m ? yi. We add the slack variable ?i where ?i = 0 for all i that is
proportional to the misclassification error: maxm{fm(xi) + 1 – di

m} - fyi(xi) = ?i, hence
fyi(xi) - fm(xi) + di

m = 1 - ?i for all i, m. To minimize this classification error and maximize
the distance between the hyper-planes (Structural Risk Minimization) we have the
following formulation:

Minimize: ? i?i + ß(1/2)? mwm
Twm + (1/2)? mbm

2,
where ß > 0 is defined as a regularization constant.

Constraint: wyi.xi + byi - wm.xi - bm - 1 + ?i + di
m = 0 for all i,m

Note: the term (1/2) ? mbm
2 is added for de-coupling, 1/ß = C, and m = yi in the above

constraint is consistent with ?i = 0. The Lagrangian is:

L(w,b,?) = ? i?i + ß(1/2)? mwm
Twm + (1/2)? mbm

2

 - ? i? ma i
m(wyi.xi + byi - wm.xi - bm - 1 + ?i + di

m)

Where all a i
ms are positive Lagrange multipliers. Now taking partial derivatives of the

Lagrangian and equating them to zero (Saddle Point solution): ?L/??i = 1 - ? ma i
m = 0.

This implies that ? ma i
m = 1 for all i. ?L/?bm = bm + ? ia i

m - ? idi
m = 0 for all m. Hence bm

= ? i(di
m – a i

m). Similarly: ?L/?wm = ßwm + ? i a i
mxi - ? i di

mxi = 0 for all m. Hence wm =
(1/ ß)[? i(di

m - a i
m)xi] Substituting the above equations into the Lagrangian and after

simplification reduces into the dual formalism:

Maximize: -½? i,j? m(di
m - a i

m)(dj
m – a j

m)(Kij + ß) - ß? i,mdi
ma i

m

Constraint: 0 = a i
m, ? ma i

m = 1, i = 1…l; m = 1…k

Where Kij = xi.xj is the Kernel generalization.
further details on solving the multiclass system are given in [4]. For our purposes here,
however, the last formulation of the problem suffices to describe the categories of KKT
violators as SV or boundary support vector (BSV).

SVM-Internal Speedup via differentiating BSVs and SVs
Since the algorithm by Crammer & Singer [7] does not differentiate between SV and
BSV, a lot of time is spent in trying to adjust the weights of the BSV i.e. weak data. We
briefly examine this in [4], where the modification to the algorithm is shown below. Once
the BSV’s are identified (as specified by Case III conditions), their weights are no longer
adjusted. This results in faster convergence without sacrificing accuracy. For the
BSV/SV-tracking speedup, the KKT violators are redefined as:

For all m ? yi we have:
a i

m{fyi – fm – 1 + ?i} = 0
Subject to: 1 = a i

m = 0; ? ma i
m = 1; ?i = 0 for all i,m

Where fm = (1/ß)[wm.xi + bm] for all m

Case I:
If a i

m = 0 for m S.T fm = fm
max

Implies a i
yi > 0 and hence ?i = 0

Hence fyi – fm
max – 1 = 0

Case II:
If 1 > a i

m > 0 for m S.T fm = fm
max and a i

yi > a i
m

Implies ?i = 0
Hence fyi – fm

max – 1 = 0

Case III:
If 1 = a i

m > 0 for m S.T fm = fm
max and a i

yi = a i
m

Implies ?i > 0

Hence fyi – fm
max – 1 + ?i = 0

Or fyi – fm
max – 1 < 0

Results

Four sets of experimental Results are presented. The first two sets concern the optimal
performance/learning-rate configurations for feature vector passing (“pass-tuning”),
where the SVM training is performed using chunking with different learning topologies
(sequential, partially-sequential distributed). The experiments are: (1) SV/non-SV pass-
tuning on binary subsets of {9AT,9TA,9CG,9GC,8GC}; and, (2) SV/non-SV pass-tuning
for binary classification of (9AT,9TA) vs (9CG,9GC).

There appear to be minor instabilities when learning on distributed topologies, and there
are a couple of new approaches that appear to be robust in addressing these instabilities.
In turn, this allows the hopes of a distributed speedup to be directly realized. One of those
new approaches is a post-processing phase, after all KKT violators have been eliminated,
during which SV alpha’s near the boundaries are coerced to their boundary sets (i.e., to
the polarization set at alpha=0 or the penalty set at alpha=C). This is the subject of the
third section: (3) Support Vector Reduction (SVR). The fourth and last section of the
Results shows the combined operation of various methods for comparative purposes, and
indicates that robust distributed SVM learning may be possible: (4) Distributed SVM
with pass-tuning and SVR.

SV/non-SV pass-tuning on binary subsets of {9AT,9TA,9CG,9GC,8GC}: an outlier-
management chunking heuristic
For DNA hairpin feature vector datasets, our observations have shown the best kernels to
be the Gaussian, Absdiff, and Sentropic kernels (see Background). Of the three kernels
indicated, Absdiff and Sentropic produce similar results when measuring accuracy as the
average of the Sensitivity (SN) and Specificity (SP), typically significantly outperforming
the third best kernel, Gaussian. The Gaussian kernel, on the other hand, is the best
performing of the three at keeping the growth in chunk-size as small as possible.

Sequential chunking is a simple form of chunking which is not multi-threaded. This
method runs the SVM on the first chunk, and then sends the support feature vectors (SVs)
and sometimes non-SVs to be added onto the training data for the next chunk. This
continues until the final chunk has been run. When using sequential chunking, feature
vector passing can be difficult since passing too many features on to the next chunk can
result in training datasets that are too large in the later chunks in the process. For the
sequential chunking method, the accuracy of Absdiff (0.898) is shown in Table 1.
Sentropic (0.891) produces similar results (see Table A1 in Additional file 1). Gaussian
has accuracy 0.864 (see Table A2 in Additional file 2). In these data runs, 100% of the
support vector set was passed to the next set of chunks (see Methods). The chunking
parameters indicated for the table represent the best accuracy for the given chunking
method, and all of the parameter selections are verified for stability (in that minor
changes of parameter do not strongly alter classifier accuracy).

For the multi-threaded chunking method, the average accuracy of Sentropic is best
(0.855) (see Table 2). Absdiff (0.854) is very similar in performance, and is shown in
Table A3 in Additional file 3. Gaussian has average accuracy 0.833 (and is shown in
Table A4 in Additional file 4). In these data runs, 30% of the support vector set was
passed to the next set of chunks. If 100% SV-passing is attempted there is typically
failure to converge. As with the sequential Results, these chunking parameters chosen
represent the best accuracy for the given chunking method, and all of the parameter
selections are verified for stability.

The SVs in the final distributed chunk with Gaussian kernel have an average 78%
reduction from the original data-set to final chunk SV decision-set, while the Sentropic
kernel has a 72% reduction. The SV number in the final sequential chunk had a 22.5%
reduction for the Absdiff kernel in the sequential setting, compared with a 44.3%
reduction for the Gaussian kernel. So the improved accuracy of the Absdiff and Sentropic
kernels, over the standard Gaussian kernels, comes at a minor cost in computational time
in the distributed-chunking setting, while it can involve significantly more time in the
sequential-chunking setting.

From tuning over the number of SVs to pass, we find that sequential learning topologies
strongly benefit from 100% SV passing, whereas distributed learning topologies have a
non-optimality at 100% SV passing (and is prone to non-convergence to a solution – see
Fig. 1), while 30% SV-passing performs as well and with greater stability. There are a
variety of ways to deal with the distributed learning instabilities found with passing
‘base’ SV’s, including the solution of pipelining the learning process to always have SV’s
merge into an untrained chunk to avoid outlier accumulation (and gridlock) in the
learning process. In the Discussion we suggest that the low SV-passing percentage that is
found to work in distributed chunking might fundamentally be an issue of outlier control
during distributed learning.

SV/non-SV pass-tuning on (9AT,9TA) vs (9CG,9GC): an outlier-management
chunking heuristic
For the DNA hairpin datasets considered in the previous section, and considered here on
a larger dataset, we find that the ideal chunking parameter for sequential chunking is
100% of the support vector set. This produced the best accuracy (0.855) with stable
conditions (see Fig. 2). Table 3 displays a sample run and the size of each chunk as the
algorithm progresses through the chunks. Table 3 also shows the feature vector set
composition of each chunk.

For the DNA hairpin datasets considered in the previous section, and considered here on
a larger dataset, results have shown that the ideal chunking parameter for distributed
chunking can be as low as 30% of the support vector set. This produced the best
accuracy (0.83) with stable conditions (see Fig. 3).

For the data runs shown in Table 3 & 4, where 100% of the support vector set and 50%
of the polarization set were passed for the sequential chunking method Table 3) and 80%
of the support vector set and 60% of the polarization set were passed for the multi-
threaded chunking method (Table 4). These chunking parameters were chosen since they

produce a similar accuracy when compared to the parameters discussed above. Most
notably, only 30% SV-passing was needed for multi-threaded – while here we proceed
with using 80% SV-passing. This is done since as no weakening of performance or
convergence instabilities are observed, and so as to have a more challenging chunk-
growth problem to manage in our analysis that follows.

Support Vector Reduction
Support Vector Reduction (SVR) is a process that is run right after the SVM learning step
is complete. Instead of going on to merge subsets of feature vectors or to test data against
known results, the idea is to further reduce the support vector set. One way to do this is
to coerce some alphas to zero which means they would now fall into the polarization set.
This process is described further in the Methods.

Figure 4 shows the results of the SVR method on the non-chunking SMO SVM. For this
dataset, 0.19 was found to be the best cut off value since it retains accuracy while
reducing the support vectors. For the 9GC9CG_9AT9TA dataset, 140 support vectors
(10.5% of total) were dropped without affecting the accuracy.

SVR-enabled data runs using sequential chunking methods (Figure A1 in Additional file
9) and multi-threaded chunking methods (Figure A2 in Additional file 10) show similar
results. The chunking results tend to be noisier since the SVM algorithm makes some
approximations, thus the hyperplane will not be exactly the same for every data run and
this behavior is amplified in the chunking methods. Nonetheless, the SVR method cuts
down on support vectors and decreases testing time. For sequential chunking (Figure A1
in Additional file 9), an alpha cut-off value of 0.25 caused 87 support vectors (7.2%) to
be dropped without affecting accuracy. For multi-threaded chunking (Figure A2 in
Additional file 10), an alpha cut-off value of 0.22 dropped 26 support vectors (6.2%)
while retaining accuracy.

Distributed SVM with pass-tuning and SVR
Multi-threaded Chunking
The multi-threaded chunking method simultaneously runs the chunks using multiple
threads. Once all of the threaded chunks are finished training, the chunk results are
collected into an array. The same user defined percentages of feature vector sets are used
here except this time those percentages of feature vectors are extracted from each chunk.
All of the chosen feature vectors to be passed are stored together then re-chunked if the
current data set is large enough to be chunked again. Re-chunking occurs when the data
set is greater than or equal to twice the specified chunk size. If this is not the case, the
final chunk is run alone to get the final result. The main use of the multi-threaded
chunking method is with a single computer with multiple processors/cores. Results are
shown in Table 5.

Multi-threaded Distributed Chunking
The multi-threaded distributed chunking implementation is a multi-server/multi-CPU
(core) version of the previous multi-threaded chunking method. Java RMI is used to
handle the remote calls between the client and servers. The client program runs multi-
threaded remote calls to a user specified set of servers (round robin). Each server and the

client machine have an SVM Server listening. When the client program runs, a chunk is
passed to each available processor/core in the network until all or as many as possible are
training simultaneously. As the chunks finish, the results are passed back to the client.
Each “chunk level” may take multiple batches depending on the chunk size and amount
of processors/cores available. The final chunk is largest so the client program should be
processed on the machine with the most computing power. This not only speeds up the
final chunk but allowing larger chunks should produce better final results. The main
benefit of this method is a significant decrease in run time for large datasets. As shown
below in Table 5, multi-threaded distributed chunking performs almost as well as non-
chunked learning. Network overhead causes it to be slightly slower than the single-server
multi-threaded chunking method. With extremely large datasets (i.e. 60,000 feature
vectors and larger), the multi-threaded and distributed method is shown to fill a critical
need.

Discussion and Conclusion

Support Vector Machines are extremely useful for classifying data and therefore
dominate over other methods in a variety of fields and applications. Since the main
weakness of SVMs is the long training time when running large datasets it is only natural
to develop multi-threaded distributed SVM training methods, especially since multiple
cores/processors are becoming commonplace, each with a steadily growing capacity for
RAM.

An overall comparison of the SVM methods explained here can be found in Table 5
(above). Sequential chunking has the benefit of holding onto accuracy when compared to
running the straight SVM (SMO) but the run times can be higher since the method does
not run in parallel. Multi-threaded chunking has a significant run time performance
improvement, which is further improved when employing the SVR method. The multi-
threaded aspect allows training of extremely large datasets which may not be possible
using sequential chunking. Additionally, using the multi-threaded distributed method
allows users to add machines to make the algorithm train even faster. This aspect makes
the size of the dataset no longer as significant a limitation in SVM training, which opens
up many possibilities for the practical use of SVM methods in SVM-intensive
applications, such as SVM-based clustering [4].

Methods

Chunking Protocols
Chunking becomes a necessity when classifying large datasets. The number and size of
the chunks depends on the size of the dataset to be trained. In the Java implementation
used here, the user specifies the size of each chunk and the chunks are broken up
accordingly. If the chunks don't divide evenly, which is the case most of the time, the
few remaining feature vectors are added to the last chunk. When training on the chunk is
complete, the resulting trained feature vectors split into distinct sets (support vectors,
polarization set, penalty set, and KKT violator). If the SVM learning is done well, the
largest set consists of the support and polarization feature vectors. The polarization set

consists of the feature vectors that have been properly classified. These feature vectors
pass the KKT relations and have an alpha coefficient equal to zero. The penalty set
consists of the feature vectors which pass the KKT relations and have alpha coefficients
equal to C (the max value). The KKT violators make up another set consisting of feature
vectors that violate one of the KKT relations. (The KKT violator set is usually zero at the
end of the training process, unless some minimal number of violators is allowed upon
learning completion.). These sets give the user different categories of feature vectors that
they can pass to the next chunk(s). To keep the SVM converging to a better solution on
the next chunk run, however, support vectors (and sometimes some of the polarization
set) are passed to the next chunk(s). The optimal pass-percentages of each feature vector
set depend on which kernel is used and the dataset.

There are different methods of extracting the feature vectors from the different sets. The
specified percentages of feature vectors are pseudo-randomly chosen from each of the
sets except for one. The support feature vectors extraction method differs since it
extracts the support vectors that are nearest to the decision hyperplane. We choose
feature vectors whose scores are closer to the hyperplane in order to pass a tighter
hyperplane on to the next chunk(s), and manage accumulation of outliers.

The chunk learning topology used in our distributed approach is slightly different from
the Binary Tree splitting described in the Cascade SVM presented in [10]. As discussed
above, the large dataset is broken into smaller chunks and the SVM is run on each
separate chunk. Instead of bringing the results of paired chunks together, all chunk
results are brought together and re-chunked as occurred in the first layer. This process
occurs until the final chunk is calculated which gives the trained result. At each training
stage, the user has the option to tune the percentage of support vectors and non support
vectors to pass to the next set of chunks. Additionally, passed support vectors can be
chosen to satisfy some max value (approx. C/10 in cases examined) to produce a tighter
hyperplane to better distinguish the polarization sets and eliminate outliers. We also
incorporate SVR post-processing in some of the dataruns (method below), where SVR
runs as part of the core SVM learning task on each chunk. It uses a user-defined alpha
cutoff value for further tuning and can significantly reduce the number of support vectors
passed to the next set of chunks (with bias towards elimination of outliers and the large
non-boundary alphas). These additional steps reduce the size of the chunks, thus making
the algorithm run faster without loss of accuracy. The SVR post-processing also appears
to offer similar immunity to the convergence pathology (noted previously for 100% SV
passing on distributed learning topologies).

SVR Method
Support Vector Reduction (SVR) is a process that is run right after the SVM learning step
is complete. Instead of going on to testing data against the training results to get
accuracy, we further reduce the support vector set. One way to do this is to coerce some
alphas to zero which means they would now fall into the polarization set. Converting the
smaller alphas to zeros makes the most sense since a larger alpha indicates that the data
point is stronger towards its grouping (polarized sign). This is done using a user-defined
alpha cut off value. All alpha values that are under the cut off are pushed to zero. It is

not entirely trivial since certain mathematical constraints must be met. The constraint
that must be met for this method is the linear equality constraint [1-4]:

0
1

=∑
=

N

i
iiy α

Therefore, the alpha values not meeting the cutoff cannot just be forced to zero
unless the value is retained somewhere else in the set. This is done by first sorting the
alpha values of the support vectors. Then for each alpha that does not meet the cut off
value, the small left over value is added to the largest alpha of the same polarity (further
biases towards SVR). Since the list is sorted it can loop through and evenly distribute the
left over values through the larger alphas starting with the largest. The reduction process
can cut the number of support vectors significantly, while not significantly diminishing
the accuracy. Other observations have shown that the easier the dataset to classify, the
larger the reduction via this process.

Competing interests
The author declares that there are no competing interests.

Author’s Contribution
KA did the datarun experiments and helped with writing the paper. SWH proposed the
problem and the SVR methods and helped write the paper. Data analyzed was from
nanopore detector experiments that were performed at the Children’s Hospital nanopore
detector facilities directed by SWH.

Acknowledgments
Funding was derived from grants from NIH and the LA Board of Regents. Federal
funding was provided by NIH K-22 (SWH PI, 5K22LM008794). State funding was
provided from a LaBOR Enhancement (SWH PI).

References
1. Vapnik VN. The Nature of Statistical Learning Theory, Springer-Verlag, New

York, 1995.
2. Cortes C, and Vapnik VN, “Support Vector Networks”, Machine Learning, 20:273-

297. 1995.
3. Platt JC, “Sequential Minimal Optimization: A Fast Algorithm for Training

Support Vector Machines”, Microsoft Research, Technical Report MSR-TR-98-
14. 1998.

4. Winters-Hilt S, Yelundur A, McChesney C, Landry M: Support Vector Machine
Implementations for Classification & Clustering. BMC Bioinf. 7 Suppl 2: S4,
2006.

5. Platt JC. Fast Training of Support Vector Machines using Sequential Minimal
Optimization. In Advances in Kernel Methods -- Support Vector Learning. Edited
by Scholkopf B, Burges CJC, and Smola AJ. MIT Press, Cambridge, USA; Ch.
12. 1998.

6. Keerthi SS, Shevade SK, Bhattacharyya C and Murthy KRK. Improvements to
Platt's SMO algorithm for SVM classifier design. Neural Computation, Vol. 13,
637-649. 2001.

7. Crammer K and Singer Y. On the Algorithmic Implementation of Multiclass
Kernel-based Vector Machines. Journal of Machine Learning Research 2 pp. 265-
292. 2001.

8. Zanghirati G and Zanni L, “A parallel solver for large quadratic programs in
training support vector machines”, Parallel Computing, Vol. 29, pp.535-551,
2003.

9. Joachims T, Making large-scale SVM learning practical, in: B. Sch€lkopf, C.J.C.
Burges, A. Smola (Eds.), Advances in Kernel Methods––Support Vector
Learning, MIT Press, Cambridge, MA, 1998.

10. Graf HP, Cosatto E, Bottou L, Durdanovic I, and Vapnik VN. Parallel Support
Vector Machines: The Cascade SVM, in proceedings NIPS, 2004.

11. Winters-Hilt S, Vercoutere W, DeGuzman VS, Deamer DW, Akeson M, and
Haussler D. Highly Accurate Classification of Watson-Crick Basepairs on
Termini of Single DNA Molecules. Biophys. J. 84:967-976. 2003.

12. Hsu CW, Lin CJ: A Comparison of Methods for Multi-class Support Vector
Machines. IEEE Transactions on Neural Networks 13;:415-425. 2002.

13. Lee Y, Lin Y, Wahba G: Multicategory Support Vector Machines. Technical
Report 1043, Dept of Statistics http://citeseer.ist.psu.edu/lee01multicategory.html
University of Wisconsin, Madison, WI. 2001.

Figure Legends

Figure 1. SVM convergence failure seen with 100% SV passing on distributed
learning topologies. SVM training dataset reduction with 100% SVs passed on a
distributed learning topology.

Figure 2 Sequential Learning Topology SV pass-tuning. Dataset =
9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Absdiff kernel with
sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. This result shows the trend for
sequential chunking when using different support vector and polarization set percentage
parameters. (During the tuning operation, every variation of multiples of ten up to 100
was used for each of the two sets. For example, when the SV % parameter was 10, the
polarization set % parameter would vary from 0 to 100 in multiples of ten.) For most of
the data run, especially the more stable part at 100 % SVs, the variation of the small
polarization set did not seem to have much effect on the outcome.

Figure 3. Distributed Learning Topology SV pass-tuning. Dataset =
9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Absdiff kernel with
sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. This shows the trend for multi-
threaded chunking when using different support vector and polarization set percentage
parameters. (Every variation of multiples of ten up to 100 was used for each of the two
sets. For example, when the SV % parameter was 10, the polarization set % parameter
would vary from 0 to 100 in multiples of ten.) For most of the data run, especially the
more stable part around 30 % SV-passing, the variation of the polarization set did not
have much effect on the outcome.

Figure 4. SMO (non-chunking) Support Vector Reduction. Dataset:
9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Absdiff kernel with
sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. This graph shows the rate of support
vectors reduced as the alpha cutoff value is increased. The alpha cutoff value 0.19 is
chosen as the best since it is the last value before accuracy begins to degrade. This
chosen value reduces 140 support vectors.

Tables and captions

Sequential Chunked SMO Chunk Size 200 of 800 total feature vectors
Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 100 554 0.96 0.95 0.955 12610
8GC9CG 114 557 0.92 0.92 0.92 16901
8GC9GC 58 524 0.94 0.97 0.955 8914
8GC9TA 68 542 0.97 0.95 0.96 10000
9AT9CG 37 727 0.83 0.8 0.815 10936
9AT9GC 23 727 0.83 0.83 0.83 9757
9AT9TA 9 661 0.93 0.93 0.93 7563
9CG9GC 15 751 0.78 0.77 0.775 9218
9CG9TA 41 597 0.92 0.89 0.905 10267
9GC9TA 51 567 0.95 0.92 0.935 9695
Mean 51.6 620.7 0.903 0.893 0.898 10586.1

Table 1. Sequential chunking using different DNA hairpin datasets. This table
shows the different sequential chunking data runs performed on assortments of DNA
hairpin pairs. The last line of the table presents the mean of the data runs. SVM
Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001.
Passing 100% of support vectors.

Distributed Chunked SMO Chunk Size 200 of 800 total feature vectors
Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 14 221 0.97 0.89 0.93 2667
8GC9CG 30 202 0.91 0.9 0.905 1993
8GC9GC 27 208 0.91 0.93 0.92 2003
8GC9TA 38 208 0.95 0.88 0.915 2017
9AT9CG 8 232 0.79 0.72 0.755 2531
9AT9GC 21 237 0.71 0.8 0.755 2121
9AT9TA 8 234 0.85 0.87 0.86 2318
9CG9GC 9 237 0.74 0.69 0.715 2132
9CG9TA 8 230 0.84 0.94 0.89 2003
9GC9TA 10 224 0.94 0.87 0.905 1945
Mean 17.3 223.3 0.86 0.849 0.855 2173

Table 2. Multi-threaded chunking using different DNA hairpin datasets. This table
shows the different multi-threaded chunking data runs performed on assortments of DNA
hairpin pairs. The last line of the table presents the mean of the data runs. SVM
Parameters: Sentropic kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001.
Passing 30% of support vectors.

 Chunk 1 Chunk 2 Chunk 3 Chunk 4
Total Chunk Size 400 787 1143 1472
Support Vectors 373 700 1002 1320
Polarization Set 27 86 140 152
Penalty Set 0 0 0 0
Violator Set 0 1 1 0

Support Vectors Passed 373 700 1002
Polarization Set Passed 14 43 70
Total Passed Set 387 743 1072

Table 4. Sequential chunking with the Absdiff kernel. Dataset = 9GC9CG_9AT9TA
(1600 feature vectors). SVM Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon
= .001, Tolerance = .001. Pass 100% of support vectors and 50% of polarization set.
Final Chunk Performance: {SN, SP} = {.87, .84}. A breakdown of each feature vector set
is displayed to show how the percentage parameters are used to pass portions of each set
to the next chunk.

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Total Chunk Size 400 400 400 400 423 423 425 504 504 791
Support Vectors 373 377 378 388 402 402 403 466 460 699
Polarization Set 27 23 22 12 21 21 22 38 43 92
Penalty Set 0 0 0 0 0 0 0 0 0 0
Violator Set 0 0 0 0 0 0 0 0 1 0

Support Vectors Passed 1218 - - - 968 - - 742 - -
Polarization Set Passed 53 - - - 40 - - 49 - -
Total Passed Set 1271 - - - 1008 - - 791 - -

Table 4. Multi-threaded chunking with the Absdiff kernel. Dataset =
9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Absdiff kernel with
sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. Pass 80% of support vectors and
60% of polarization set. Final Chunk Performance: {SN, SP} = {.855, .795}. A
breakdown of each feature vector set is displayed to show how the percentage parameters
are used to pass portions of each set to the next set of chunks.

SVM Method Sensitivity Specificity (SN + SP) / 2
Total
Time
(ms)

SMO (non-chunked) 0.87 0.84 0.86 47708
Sequential Chunking 0.84 0.86 0.85 27515
Multi-threaded Chunking 0.88 0.78 0.83 7855
SMO (non-chunked) with SV
Reduction 0.91 0.81 0.86 43662
Sequential Chunking with SV
Reduction 0.90 0.82 0.86 18479
Multi-threaded Chunking with SV
Reduction 0.85 0.83 0.84 5232
Multi-threaded Distributed Chunking
with SV Reduction 0.85 0.83 0.84 5973

Table 5. Performance comparison of the different SVM methods. The distributed
chunking used three identical networked machines. Dataset = 9GC9CG_9AT9TA (1600
feature vectors). SVM Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001,
Tolerance = .001. For chunking methods: Pass 90% of support vectors, Starting chunk
size = 400, maxChunks = 2. For SV Reduction methods: Alpha cut off value = .15.

Additional files

Additional file 1
File format: DOC
Title: Table A1. Sequential chunking using different DNA hairpin datasets.
Description: This table shows the different sequential chunking data runs performed on
assortments of DNA hairpin pairs. The last line of the table presents the mean of the data
runs. SVM Parameters: Sentropic kernel with sigma=.5, C = 10, Epsilon = .001,
Tolerance = .001. Passing 100% of support vectors.

Additional file 2
File format: DOC
Title: Table A2. Sequential chunking using different DNA hairpin datasets.
Description: This table shows the different sequential chunking data runs performed on
assortments of DNA hairpin pairs. The last line of the table presents the mean of the data
runs. SVM Parameters: Gaussian kernel with sigma=.05, C = 10, Epsilon = .001,
Tolerance = .001. Passing 100% of support vectors.

Additional file 3
File format: DOC
Title: Table A3. Multi-threaded chunking using different DNA hairpin datasets.
Description: This table shows the different multi-threaded chunking data runs performed
on assortments of DNA hairpin pairs. The last line of the table presents the mean of the
data runs. SVM Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001,
Tolerance = .001. Passing 30% of support vectors.

Additional file 4
File format: DOC
Title: Table A4. Multi-threaded chunking using different DNA hairpin datasets.
Description: This table shows the different multi-threaded chunking data runs performed
on assortments of DNA hairpin pairs. The last line of the table presents the mean of the
data runs. SVM Parameters: Gaussian kernel with sigma=.05, C = 10, Epsilon = .001,
Tolerance = .001. Passing 30% of support vectors.

Additional file 5
File format: DOC
Title: Table A5. Sequential chunking method focusing on the chunk sizes during the
data run, using the sentropic kernel.
Description: The breakdown of each feature vector set is displayed to show how the
percentage parameters are used to pass portions of each set to the next chunk.Dataset =
9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Sentropic kernel with
sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. Pass 100% of support vectors and
50% of polarization set. Final Chunk Performance: {SN, SP} = {.875, .82}.

Additional file 6
File format: DOC

Title: Table A6. Sequential chunking method focusing on the chunk sizes during the
data run, using the Gaussian kernel.
Description: The breakdown of each feature vector set is displayed to show how the
percentage parameters are used to pass portions of each set to the next chunk. Dataset =
9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Gaussian kernel with
sigma=.05, C = 10, Epsilon = .001, Tolerance = .001. Pass 100% of support vectors and
50% of polarization set. Final Chunk Performance: {SN, SP} = {.715, .85}.

Additional file 7
File format: DOC
Title: Table A7. The multi-threaded chunking method focusing on the chunk sizes during
the data run and using the sentropic kernel.
Description: The breakdown of each feature vector set is displayed to show how the
percentage parameters are used to pass portions of each set to the next set of chunks.
Dataset = 9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Sentropic kernel
with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. Pass 80% of support vectors
and 60% of polarization set. Final Chunk Performance: {SN, SP} = {.845, .755}.

Additional file 8
File format: DOC
Title: Table A8. This table shows the multi-threaded chunking method focusing on the
chunk sizes during the data run using the Gaussian kernel.
Description: The breakdown of each feature vector set is displayed to show how the
percentage parameters are used to pass portions of each set to the next set of chunks.
Dataset = 9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Gaussian kernel
with sigma=.05, C = 10, Epsilon = .001, Tolerance = .001. Pass 80% of support vectors
and 60% of polarization set. Final Chunk Performance: {SN, SP} = {.85, .83}.

Additional file 9
File format: DOC
Title: Figure A1. Sequential Chunking Support Vector Reduction.
Description: Dataset: 9GC9CG_9AT9TA (1600 feature vectors), Starting chunk
size=400. SVM Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001,
Tolerance = .001. Passing 100% of Support Vectors. This graph shows the rate of support
vectors reduced as the alpha cutoff value is increased. The alpha cutoff value 0.25 is
chosen as the best since it is the last value before accuracy begins to degrade. This
chosen value reduces 87 support vectors.

Additional file 10
File format: DOC
Title: Figure A2. Multi-threaded Chunking Support Vector Reduction.
Description: Dataset: 9GC9CG_9AT9TA (1600 feature vectors), Starting chunk
size=400. SVM Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001,
Tolerance = .001. Passing 30% of Support Vectors. This graph shows the rate of support
vectors reduced as the alpha cutoff value is increased. The alpha cutoff value 0.22 is
chosen as the best since it is the last value before accuracy begins to degrade. This
chosen value reduces 26 support vectors.

Figure 1.

Figure 2.

Sequential Chunking % Parameters

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88
10 10 10 20 20 30 30 40 40 50 50 60 60 60 70 70 80 80 90 90 10

0

10
0

Support Vector % Passed

(S
N

+S
P

)/
2

(SN+SP)/2

Figure 3.

Multi-threaded Chunking % Parameters

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

10 10 10 20 20 30 30 40 40 50 50 60 60 60 70 70 80 80 90 90 10
0

10
0

Support Vector % Passed

(S
N

+S
P

)/
2

(SN+SP)/2

Figure 4.

SMO Support Vector Reduction

0

50

100

150

200

250

300

350

400

450

n/
a

0.
04

0.
08

0.
12

0.
16

0.
2

0.
24

0.
28

0.
32

0.
36

0.
4

0.
44

0.
48

Alpha Cutoff
Value

S
u
p
p
or
t
V
ec
to
rs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVs
(SN + SP) /
2

Additional file 1

Sequential Chunked SMO Chunk Size 200 of 800 total feature vectors
Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 52 570 0.96 0.95 0.955 14479
8GC9CG 78 545 0.93 0.93 0.93 16844
8GC9GC 22 525 0.92 0.95 0.935 10065
8GC9TA 130 550 0.97 0.95 0.96 18304
9AT9CG 32 722 0.83 0.82 0.825 15273
9AT9GC 44 734 0.81 0.82 0.815 15452
9AT9TA 39 693 0.9 0.9 0.9 14419
9CG9GC 33 747 0.75 0.79 0.77 14855
9CG9TA 73 616 0.89 0.91 0.9 16978
9GC9TA 54 597 0.91 0.93 0.92 14159
Mean 55.7 629.9 0.89 0.895 0.891 15082.8

Table A1. Sequential chunking using different DNA hairpin datasets. This table
shows the different sequential chunking data runs performed on assortments of DNA
hairpin pairs. The last line of the table presents the mean of the data runs. SVM
Parameters: Sentropic kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001.
Passing 100% of support vectors.

Additional file 2

Sequential Chunked SMO Chunk Size 200 of 800 total feature vectors
Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 97 434 0.93 0.88 0.905 14978
8GC9CG 83 395 0.88 0.85 0.865 15653
8GC9GC 134 396 0.94 0.88 0.91 17783
8GC9TA 114 396 0.96 0.82 0.89 15988
9AT9CG 62 503 0.79 0.82 0.805 20789
9AT9GC 89 488 0.81 0.85 0.83 20833
9AT9TA 111 477 0.91 0.89 0.9 18057
9CG9GC 60 523 0.91 0.54 0.725 20233
9CG9TA 78 436 0.88 0.9 0.89 17910
9GC9TA 89 409 0.9 0.94 0.92 12422
Mean 91.7 445.7 0.891 0.84 0.864 17464.6

Table A2. Sequential chunking using different DNA hairpin datasets. This table
shows the different sequential chunking data runs performed on assortments of DNA
hairpin pairs. The last line of the table presents the mean of the data runs. SVM
Parameters: Gaussian kernel with sigma=.05, C = 10, Epsilon = .001, Tolerance = .001.
Passing 100% of support vectors.

Additional file 3

Distributed Chunked SMO Chunk Size 200 of 800 total feature vectors
Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 8 222 0.97 0.83 0.9 1947
8GC9CG 8 226 0.91 0.89 0.9 1471
8GC9GC 65 205 0.93 0.96 0.945 1412
8GC9TA 28 209 0.84 0.93 0.885 1489
9AT9CG 8 238 0.77 0.65 0.71 1308
9AT9GC 10 228 0.74 0.71 0.725 1342
9AT9TA 10 232 0.9 0.91 0.905 1265
9CG9GC 8 238 0.66 0.85 0.755 1236
9CG9TA 10 222 0.92 0.91 0.915 1232
9GC9TA 12 224 0.92 0.88 0.9 1233
Mean 16.7 224.4 0.856 0.852 0.854 1393.5

Table A3. Multi-threaded chunking using different DNA hairpin datasets. This table
shows the different multi-threaded chunking data runs performed on assortments of DNA
hairpin pairs. The last line of the table presents the mean of the data runs. SVM
Parameters: Absdiff kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001.
Passing 30% of support vectors.

Additional file 4

Distributed Chunked SMO Chunk Size 200 of 800 total feature vectors
Data Iterations # of SVs SN SP (SN+SP)/2 Elapsed Time (ms)
8GC9AT 24 174 0.93 0.83 0.88 2629
8GC9CG 13 170 0.87 0.85 0.86 1732
8GC9GC 59 167 0.95 0.76 0.855 1970
8GC9TA 66 158 0.96 0.8 0.88 1713
9AT9CG 35 192 0.88 0.72 0.8 1490
9AT9GC 34 191 0.79 0.81 0.8 1750
9AT9TA 36 181 0.79 0.87 0.83 1456
9CG9GC 75 192 0.78 0.63 0.705 1912
9CG9TA 38 178 0.82 0.89 0.855 1533
9GC9TA 37 166 0.84 0.89 0.865 1922
Mean 41.7 176.9 0.861 0.81 0.833 1810.7

Table A4. Multi-threaded chunking using different DNA hairpin datasets. This table
shows the different multi-threaded chunking data runs performed on assortments of DNA
hairpin pairs. The last line of the table presents the mean of the data runs. SVM
Parameters: Gaussian kernel with sigma=.05, C = 10, Epsilon = .001, Tolerance = .001.
Passing 30% of support vectors.

Additional file 5

 Chunk 1 Chunk 2 Chunk 3 Chunk 4
Total Chunk Size 400 792 1150 1481
Support Vectors 383 707 1011 1320
Polarization Set 17 85 139 160
Penalty Set 0 0 0 0
Violator Set 0 0 0 1

Support Vectors Passed 383 707 1011
Polarization Set Passed 9 43 70
Total Passed Set 392 750 1081

Table A5. Sequential chunking method focusing on the chunk sizes during the
data run, using the sentropic kernel. The breakdown of each feature vector set is
displayed to show how the percentage parameters are used to pass portions of each set to
the next chunk.Dataset = 9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters:
Sentropic kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. Pass 100% of
support vectors and 50% of polarization set. Final Chunk Performance: {SN, SP} =
{.875, .82}.

Additional file 6

 Chunk 1 Chunk 2 Chunk 3 Chunk 4
Total Chunk Size 400 754 1036 1264
Support Vectors 309 521 697 881
Polarization Set 90 229 334 372
Penalty Set 1 4 4 11
Violator Set 0 0 1 0

Support Vectors Passed 309 521 697
Polarization Set Passed 45 115 167
Total Passed Set 354 636 864

Table A6. Sequential chunking method focusing on the chunk sizes during the
data run, using the Gaussian kernel. The breakdown of each feature vector set is
displayed to show how the percentage parameters are used to pass portions of each set to
the next chunk. Dataset = 9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters:
Gaussian kernel with sigma=.05, C = 10, Epsilon = .001, Tolerance = .001. Pass 100% of
support vectors and 50% of polarization set. Final Chunk Performance: {SN, SP} =
{.715, .85}

Additional file 7

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Total Chunk Size 400 400 400 400 423 423 425 503 504 787
Support Vectors 383 380 383 379 409 396 442 465 446 666
Polarization Set 17 17 17 21 21 14 27 38 56 121
Penalty Set 0 0 0 0 0 0 0 0 0 0
Violator Set 0 1 0 0 0 0 1 0 2 0

Support Vectors Passed 1224 - - - 966 - - 730 - -
Polarization Set Passed 47 - - - 41 - - 57 - -
Total Passed Set 1271 - - - 1007 - - 787 - -

Table A7. The multi-threaded chunking method focusing on the chunk sizes
during the data run and using the sentropic kernel. The breakdown of each feature
vector set is displayed to show how the percentage parameters are used to pass portions
of each set to the next set of chunks. Dataset = 9GC9CG_9AT9TA (1600 feature
vectors). SVM Parameters: Sentropic kernel with sigma=.5, C = 10, Epsilon = .001,
Tolerance = .001. Pass 80% of support vectors and 60% of polarization set. Final Chunk
Performance: {SN, SP} = {.845, .755}.

Additional file 8

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Total Chunk Size 400 400 400 400 401 401 403 458 458 690
Support Vectors 291 309 316 305 318 320 313 341 354 495
Polarization Set 108 90 83 93 83 81 88 116 103 194
Penalty Set 1 1 1 0 0 0 2 1 0 1
Violator Set 0 0 0 2 0 0 0 0 1 0

Support Vectors Passed 980 - - - 764 - - 558 - -
Polarization Set Passed 225 - - - 152 - - 132 - -
Total Passed Set 1205 - - - 913 - - 690 - -

Table A8. This table shows the multi-threaded chunking method focusing on the
chunk sizes during the data run using the Gaussian kernel. The breakdown of each
feature vector set is displayed to show how the percentage parameters are used to pass
portions of each set to the next set of chunks. Dataset = 9GC9CG_9AT9TA (1600 feature
vectors). SVM Parameters: Gaussian kernel with sigma=.05, C = 10, Epsilon = .001,
Tolerance = .001. Pass 80% of support vectors and 60% of polarization set. Final Chunk
Performance: {SN, SP} = {.85, .83}.

Additional file 9

Figure A1. Sequential Chunking Support Vector Reduction. Dataset:
9GC9CG_9AT9TA (1600 feature vectors), Starting chunk size=400. SVM Parameters:
Absdiff kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. Passing 100% of
Support Vectors. This graph shows the rate of support vectors reduced as the alpha cutoff
value is increased. The alpha cutoff value 0.25 is chosen as the best since it is the last
value before accuracy begins to degrade. This chosen value reduces 87 support vectors.

Sequential Chunking Support Vector Reduction

0

20

40

60

80

100

120

140

160

180

0

0.
04

0.
08

0.
12

0.
16 0.

2

0.
24

0.
28

0.
32

0.
36 0.

4

0.
44

0.
48

Alpha Cutoff Value

S
u

p
p

o
rt

 V
ec

to
rs

 R
ed

u
ce

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVs Reduced

(SN + SP) / 2

Additional file 10

Figure A2. Multi-threaded Chunking Support Vector Reduction. Dataset:
9GC9CG_9AT9TA (1600 feature vectors), Starting chunk size=400. SVM Parameters:
Absdiff kernel with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. Passing 30% of
Support Vectors. This graph shows the rate of support vectors reduced as the alpha cutoff
value is increased. The alpha cutoff value 0.22 is chosen as the best since it is the last
value before accuracy begins to degrade. This chosen value reduces 26 support vectors.

Multi-threaded Chunking Support Vector Reduction

0

5

10

15

20

25

30

35

40

45
0

0.
04

0.
08

0.
12

0.
16 0.

2

0.
24

0.
28

0.
32

0.
36 0.

4

0.
44

0.
48

Alpha Cutoff Value

S
u

p
p

o
rt

 V
ec

to
rs

 R
ed

u
ce

d

0.6

0.65

0.7

0.75

0.8

0.85

SVs Reduced

(SN + SP) / 2

