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Abstract

Background

The godl of clustering analysisis to partition objects into groups, such that members of
each group are more “similar” to each other than the members of other groups. In this
paper we describe methods for using (supervised) SVM classifiers to perform
unsupervised clustering and partially supervised clustering (projection). The former is
accomplished by iteratively changing some of the label information and redoing the SVM
training, the latter has no label ateration, but requires a set specified as the positives (a
bag model, so partially supervised).

Results

The Results focus on refinements to the SV M -based clustering methods introduced in
[1,2]. We demonstrate that it is possible to stabilize the SV M -external clustering method
using simulated annealing.

Conclusions

The highest standard of performance for the SVM -based external clustering method
would be that it do aswell at cluster grouping asits SVM classification counterpart (that
trains with the true label information). We occasionally see such excellent levels of
performance with SVM-externa clustering, and the goal is to be able to single out these
cases when selecting clustering solutions via some stabilization method. Here we apply
the simulated annealing method and it appears to solve the stability problems encountered
in[2], at least on the data sets studied, to reliably yield excellent clustering solutions.



Introduction

In this paper we describe methods for using SVM classifiersto perform unsupervised
clustering and partially supervised clustering (projection). The former is accomplished by
iteratively changing some of the label information and re-clustering, the latter has no

label ateration, but requires a set to specify as the positives (a bag model, so partially
supervised). We describe improvements to the SV M -based clustering methods introduced
in[1,2], most notable being stabilization of the SVM-external clustering method using
smulated annealing. The SVM -based clustering process we use involves no explicit use
of an objective function. An objective function may be thought of as being introduced
implicitly, perhaps, in the choice of cluster validator, SVM kernel, and SVM cutoff
parameters. Even so, such an introduction of objective function is evidently weakly

linked in that several validators, kernels, parameters have been used and all perform
comparable to each other when optimized with the simulated-annealing learning
stabilization. Given the significant strengths seen with many of the solutions of the SVM -
externa clustering method described in 1,2], and summarized in the Background, a
stabilization to always use these best solutions would provide arobust clustering method.

In what follows we provide a brief background on various matters relevant to the design
of the experiment (as will be shown in he Methods and Results): (1) the theory of
clustering; (2) the theory of classification; (3) the generalization to kernel feature spaces,
(4) kernel construction using polarization; (5) supervised learning; and (6) unsupervised
learning. In the unsupervised learning background a brief synopsis of prior work with
SVM-external clustering is provided, asthisis particularly relevant to what we show in
the Resullts.

The theory of clustering

The goadl of clustering analysisis to partition objects into groups, such that members of
each group are more “similar” to each other than the members of other groups. Similarity,
however, is determined subjectively as it does not have a universally agreeable upon
definition. In [3] the author suggests aformal perspective on the difficulty in finding such
aunification, in the form of an impossibility theorem: for a set of three smple properties
described in [3], thereis no clustering function satisfying al three. Furthermore, the
author demonstrates that relaxations of these properties expose some of the interesting
(and unavoidable) trade-offs at work in well-studied clustering techniques such as single-
linkage, sum-of-pairs, k-means, and k-median.

Ideally, one would like to solve the clustering problem given al the known and unknown
objective functions. Thisis provably an NP-Hard problem [4]. This brings us to the work
presented here, which seeksto provide a new perspective on clustering by introducing an
algorithm that does not require an objective function. Hence, it does not inherit the
limitations of an embedded objective function. We propose an algorithm that is capable
of suggesting solutions that can be later evaluated using a variety of cluster vaidators.

The theory of classification
The problem of classification isto find a general rule to match a set of objects, or



observations, to their appropriate classes. In its ssmplest form the classifier’ stask isto
estimate afunction f : R" 2 {+1}, given examples and their { +1} classifications:

(Xll yl)l oy (Xn, yn)i RN X Y) Y= {il})
where (X, y) are assumed to be independent and identically distributed training data
drawn from (unknown) probability distribution P(x, y). f perfectly classifiesify = +1

when f(x) = 0, with y =-1 otherwise, where this holds for all of the n training instances.

In the loss-function formalism, the optimal f is obtained by minimizing the expected risk
function (expected error) [5]:

RIf] = Ql(f(x), y)dP(x, y)
where | is a suitable loss function. For instance, in the case of’ “0/1 loss”

1(F(x), y) = Q(- ¥f(x))
where Q isthe Heaviside function (Q(z) = 0 for z < 0 and Q(z) = 1 otherwise.) In most
realistic cases P(X, y) is unknown and therefore the risk function above cannot be used to
find the optimum function f. To overcome this fundamental limitation one has to use the
information hidden in the limited training examples and the properties of the function
class F to approximate this function. Hence, instead of minimizing the expected risk, one
minimizes the empirical risk

Rerp[f] = 1n S1(f(x), y), withsumoniT 1.n.

The learning machine can ensure that for n® ¥ the empirical risk will asymptotically
converge to expected risk, but for asmall training set the deviations are often large. This
|eads to a phenomenon called “ over-fitting,” where asmall generalization error can’'t be
obtained by ssimply minimizing the training error. One way to avoid the over-fitting
dilemmaisto restrict the complexity of the function class [6]. The intuition, which will
be formalized in the following, isthat a“simple’ (e.g., linear) function that explains most
of the datais preferable to a complex one (i.e., an application of Occam’srazor). Thisis
often introduced via a regularization term that limits the complexity of the function class
used by the learning machine [7].

A specific way of controlling the complexity of afunction classis described by the

V apnik-Chervonenkis (VC) theory and the structural risk minimization (SRM) principle
[6,8]. Here the concept of complexity is captured by the VC dimension h of the function
class F from which the estimate f is chosen. The following set of definitions indicate the
role of structural risk minimization (SRM) -- in the SYM construction that follows SRM
isimplemented via maximum margin clustering.

Definition 1 (Shattering) A Learning Machine f can shatter a set of points Xy, Xo, . . ., X,
if and only if for every possible training set of the form (x4, y1), . . . , (Xn, Yn) there exists
some parameter set that gets zero training error.

Definition 2 (VC Dimension) Given alearning machine f, the VC-dimension h isthe
maximum number of points that can be arranged so that f shatter them. Roughly
gpeaking, the VC dimension measures how many (training) points can be shattered (i.e.,



separated) for al possible labelings using functions of the class. Constructing a nested
family of function classesF,1 ¥ | F, with non-decreasing VC dimension the SRM
principle proceeds as follows:

Definition 3 (SRM Principle) Let f,% , fx be the solutions of the empirical risk
minimization in the function classes F;. SRM chooses the function class F; (and the
function f; ) such that an upper bound on the generalization error is minimized which can
be computed making use of theorems such as the following one.

Theorem 4 (Expected Risk Upper bound) Let h denote the VC dimension of the function
class F and let Ry, be defined by using the “0/1 loss.” For al delta>0andf1 F the
inequality bounding the risk

RIf] = Rapl[f] + [(W/n)(INn (20/h) + 1) - (1/n) In (d/4)]Y2
holds with probability of at least 1- d for n > h ([6,8]). Note: thisbound isonly an

example and similar formulations are available for other loss functions [8] and other
complexity measures, e.g., entropy numbers[9].

Thus, in the effort to minimize the generalization error R[f] two extremes can arise: i) a
very small function class (like F, ) yields a vanishing square root term, but alarge
training error might remain, while i) a huge function class (like F\) may give avanishing
empirical error but alarge square root term. The best classis usualy in between, as one
would like to obtain a function that explains the data quite well and to have asmall risk in
obtaining that function. Thisis very much in analogy to the bias-variance dilemma
scenario described for neural networks (see, e.g., [10]).

What these bounds universally indicate is that the minimized generalization error is
bounded by a balance between training error and size of function class (i.e., structural
risk). The standard SVM formulation (described below) directly implements such an
optimization problem by balancing such terms using a Lagrangian formalism. Before
proceeding to the SVM derivation, however, a brief description of kernel spacesis
introduced as they are critical (and part of the novelty) in the description of the SVM
Lagrangian formulations that follow, and in the Results.

Generalization to kernel feature spaces
The so-called curse of dimensionality from statistics says that the difficulty of an

estimation problem increases drastically with the dimension N of the space, sincein
principle as N increases, the number of required patterns to sample grows exponentially.
This statement may cast doubts on using higher dimensional feature vectors as input to
learning machines. This must be balanced with results from statistical learning theory [6],
however, that show that the likelihood of data separability by linear learning machinesis
proportional to their dimensionality.

Thus, instead of working in the RV, one can design algorithms to work in feature space,
F, where the data has much higher dimension (but with sufficiently small function class).
This can be described via the following mapping

F:R'® F;x® F(x).



Consider the prior training description with data xy, . . ., X, T R" ismappedinto a
potentially much higher dimensional feature space F. For a given learning algorithm one
now considers the same algorithm in F instead of R" . Hence, the learning machine
works with the following:

(F (X2, y0, .-, (F(xn), yn) I F XY, Y={+1}
It isimportant to note that this mapping is aso implicitly done for (one hidden layer)
neural networks, radial basis networks [11] and boosting algorithms [12] where the input
data is mapped to some representation given by the hidden layer, the radial basis function
(RBF) bumps or the hypotheses space, respectively.

As mentioned above, the dimensionality of the data does not detract us from finding a
good solution, but it is rather the complexity of the function class F that contributes the
most to the complexity of the problem. Similarly, in practice, one need never know the
mapping function F . Therefore, the complexity and intractability of computing the actua
mapping is also irrelevant to the complexity of the problem of classification. To this end,
algorithms are transformed to take advantage of this aspect of the method, which we call
the ‘Kernel Trick’.

Kernel Trick Definition: Achieve the following two objectives when using kernels with a
learning machine:

1) Rewrite the learning algorithm so that instead of using F (xy) and F (x,) directly, it only
uses the dot-product K(x1, X2) = F (X4) - F (X), and

2) Compute the dot-products K(x1, X») in amanner that avoids computing F (x,) and

F (x,) explicitly.

The Kernel Trick in definition will be used in the SVM derivation that follows. Note: The
Kernel Trick isonly possibleif the key equations in the learning machine involving the
training data x are grouped via an inner products, X; - X,, such that the occurrences of F
are, similarly, aways paired in inner product terms. (Then, in turn, inner products on

F arereplaced with kernel expressions). Even though we don't need to compute F for a

given choice of kernel, we still need to know that such aF existsfor thisto be a standard
kernel generalization to the formalism. Thisis accomplished using Mercer’s Condition,

which describes the test to determineif there existsamapping F for the indicated kernel:

Mercer’s Condition: For agiven function, K, there existsamapping F and an expansion:
K(x1, X2) =S5; F (X)iF (X2);
if and only if, for any function g(x) such that (‘)g(x)zdx isfinite, then

0 OK(X1, X2)g(x1)g(xz)dxsdx, = O,
i.e., the kernel is positive definite [5].

Thus, the kernel generalization is broadly applicable to kernels that are positive definite.
Note: thereis afurther subtlety upon implementation -- a kernel may not be positive
definite but may have a dense subset of finite training-set kernel matrices that are positive



definite. We have found that the entropic kernel described in what follows is positive
definite for al the training sets examined -- where the positive definite property was
assumed to hold if the kernel training matrix successfully passed amillion g(x) function
(Mercer) tests. Whether the entropic kernel isfully analytically positive definite on its
restricted domain is unresolved at thistime (see[1]).

Kernel construction using polarization
The kernels used in the analysis are based on afamily of previously developed kernels

[1,13], herereferred to as’ Occam’s Razor’, or ‘Razor’ kernels. Aswill be seen, the
Gaussian kernel isincluded in the family of Razor kernels. All of the Razor kernels
examined perform strongly on the channel current data analyzed, with some regularly
outperforming the Gaussian Kernel itself. The kernelsfall into two classes: regularized
distance (squared) kernels; and regularized information divergence kernels. Thefirst set
of kernels strongly models data with classic, geometric, attributes or interpretation. The
second set of kernels is constrained to operate on (R*)", the feature space of positive,
non-zero, real-valued feature vector components. The space of the latter kernelsis often
also restricted to feature vectors obeying an L;-norm = 1 constraint, i.e., the feature
vector is adiscrete probability vector.

Given any metric space (C, d) one can build a positive-definite kernel of theform e'! .
Conversely, any positive definite kernel with form e! & must havea‘d’ that is a metric
(thisis Mercer’ s condition in another form). This suggests that the ‘ssimplest’ kernel isthe
Gaussian kernel, since the ‘simplest’ distance, the Euclidean distance, is used. Functional
variations on the Gaussian kernel are described in what follows (see [1] for further
details), including variations that are no-longer represented as distances (non-metric), but
that operate on a constrained domain (so not clear if Mercer’s condition is violated). In
what follows a quick synopsisis given of the novel kernels that are used — two of these
kernels regularly outperformed the Gaussian kernel (and all other kernels), as will be
shown in the following.

Occam’s Razor Kernels

The regularized distance kernels are based on the notion of distance. An example of such
isthe Gaussian kernel (with Euclidian distance). In what follows, we reduce the Gaussian
kernel viaalog operation and examine the partials of the log kernel —a “ polarization”
split in the partial derivativesis clearly exhibited:

KGausﬁan(X'Y) :exp(_ é. (X1 - y|)2/$ 2)
InKg(X,y) =- é. (% - yi)z/zs ?

InKe(%,9) __
%
R CRMTCY

[(Xi - yi)/s 2]

“polarization” (Symmetric)



In what follows, suppose we attempt to modify the form of the kernel at the level of its
(symmetric) polarization. The polarization has two attributes, sign and magnitude. This
suggests first reducing to the more primitive form of the sign attribute alone (e.g., all
have unit magnitude). So, instead of discrimination governed solely by the sign of

(X - y,),weusejust the“sign” of (x - Y,),i.e, thesignum function :

INK(X,y 1 -y
Supposeﬂnﬂ—x(xy):__zsgn(xi' yi) ﬂl)}—xiyllzgéln(xi' Yi)
ﬂan(Xy) Tx-vyil_ _ T -y
— n(x, - A Vil gy, - x)=- 5~ Kl
o, . S (x - y) 1y sgn(y; - xi) =

Then recover: InK =- ia_ | X -y, |, which is another well-known kernel, the Laplace
s

kernel: K e (X, ¥) = K, (x y) = exp(- |x -y, |/s ). Thisis the “Occam’ s razor”

kerndl for feature discrimination that assumes only a difference-based (geometric)
topology (nearness but no magnitudes) on the features. The Occam’ s razor that assumes a
difference-based geometry on the features (so now not just sign, but magnitude), could
have the Gaussian polarization, as a reasonable representative and, thus, arrive back to
the Gaussian kernel. Alternatively, another ‘simple’ formulation would be to seek a
polarization term that has an integrable factor that does the opposite of increasing the
magnitude of polarization with feature vector difference: boosting the polarization on
feature vectors with smaller differences instead. These different cases are described in the
following:

TInKs(%.y)

™ =(y, - %)/s* P Kg(xy)=exp(- a (% - yi)2/2sz)

[ signaone used for polarization of discrimination
(Y, - X)/s* P K (% y)=exp(- & Ix, - v, /s

3 signwith integrable boost factor for polarization of discrimination

%rl(yi-xi)/s2 p K v ) — <] 2
5 |(X,Y)—eXp(-2/a|Xi-yi| s %),
fa|yi'xi| i /

where K, isthe ‘Indicator’ or ‘ Absdiff’ kernel [1,13].

We use asimilar basis for construction of an entirely different family of kernel functions
(based on an exponentially regularized information divergence). Instead of difference
polarization, with (x- y) less than or greater than zero, there is also ratio polarization, with
xly less than or greater than 1, with the unit value subtracted or functionally mapped to
zero: (y; / % - 1) doesthe former and In( y; /X, ) does the latter. Together they are found

to be directly integrable:



TInKs (%, y)

x =(y - Xi)/s

[3 integrableratio polarization instead of Gaussian difference

(L) - 1+In( )] /s b Ke(x9)=exp(- =& (x - y,)InC)
Xi Xl S i yi

The entropic kernel is so named because of its alternate form
Kentropic = €XP(- [D(Y || X) + D(X|| y)]/ZS %), where D(xX|ly) is the Kullback-L eibler

divergence, otherwise known as relative entropy. Thus, the Occam’ s razor kernel
appropriate to divergence-based differences on an informetion theoretic space is the
entropic kernel (parallels the Gaussian kernel in geometric space). In al of the dataruns
with the probability feature vector data considered here, the two best-performing kernels
are the entropic and the Indicator * Adbsdiff’ kernels, with the Gaussian trailing
noticeably in performance (but still outperforming other methods such as polynomia and
dot product).

Supervised Learning
Aninitia, smple, supervised learning scenario is to assume that the training data.is
separable by a hyperplane, expressed via a hyperplane separability function, or learning
machine:

f(x) =(w-x) - b.
In[6] it is shown that the for this class of hyperplanes the VC dimension can be bounded
in terms of another quantity, the margin. The margin is defined as the minimal distance of
asampleto the decision surface (see section 2.5.2). It israther intuitive that the thicker
the margin the better the training would be, and in fact this quantity could be measured
by the length of the weight vector w. Since we begin by assuming that the training datais
separable we can rescale and normalize w such that the points closest to the hyperplaneis
aunit away from the hyperplane (i.e., the canonical representation of the hyperplane).
This can be done by requiring that |(w- x) - b)|= 1. Now consider two samples x; and x,
from different classeswith (w-x;) - b=21and (w-X,) - b=- 1, respectively. The margin
is given by the distance of these two points, measured perpendicular to the hyperplane
and therefore, w/|w [P~ (x1- X2) = 2/|w|f (see Fig. 1). Thiswill be used in a Lagrangian
optimization in what followsto yield the standard binary SVM.

Binary Support Vector Machines
The binary SVM isthe supervised learning method that is co-opted to perform the

unsupervised SVM -based clustering we describe in the Results and Methods. In the
binary SVM implementation described in what follows we follow the notation and
conventions used previously [1]. Feature vectors are denoted by X, whereindex i labels
the feature vectors (1 =i = M) and index k labelsthe N feature vector components (1 = k
=N). For the binary SVM, labeling of training datais done using label variabley; = £1
(with sign according to whether the training instance was from the positive or negative



class). For hyperplane separability, elements of the training set must satisfy the
following conditions: wg Xz - b=+1fori suchthaty,=+1, and wg Xz - b=-1fory; =

for some values of the coefficients wy,..., Wy, and b (using the convention of |mpI|ed
sum on repeated Greek indices). This can be written more concisely as: yi(wg Xz - b) -
1=0. Datapointsthat satisfy the equality in the above are known as "support vectors'
(or "active constraints").

Once training is complete, discrimination is based solely on position relative to the
discriminating hyperplane: we Xz - b = 0. The boundary hyperplanes on the two classes
of data are separated by a distance 2/w, known as the "margin," where w? = wgwg. By
increasing the margin between the separated data as much as possible the optimal
separating hyperplaneis obtained. Inthe usual SVM formulation, the goa to maximize
wisrestated as the goal to minimize w?. The Lagrangian variational formulation then
selects an optimum defined at a saddle point of

W, W
L(w,b;a)=—"2

- agyg(Wngb - b)_ aO )
wherea, =8 a,,a,2 0 LEGEM)
g

The saddle point is obtained by minimizing with respect to {wj,...,wy,b} and maximizing
with respect to{ay, ..., au}. If yi(wgXiz - b) - 1 =0, then maximization on g; is achieved
for g = 0. If yj(wg Xz - b) - 1 =0, then thereis no constraint on a;. If yi(wgXiz - b) - 1 <0,
thereisaconstraint violation, and &, ? 8. If absolute separability is possible, the last
case will eventually be eliminated for all a, otherwiseit is natural to limit the size of g
by some constant upper bound, i.e., max(g) = C, for al i. Thisisequivalent to another
set of inequality constraints with @ = C. Introducing sets of Lagrange multipliers, 2, (see
Fig. 1) and g, (1 = ? = M), to achieve this, the Lagrangian becomes:

WbWb
L(w,b;a,x, m)=

-agly,(wy Xy, - b)+x J+a, +x,C- mx,

whereX, :éx aa ada,20adx, 20 (LEGEM)

At the variationa mini mum on the {wj,.. ,WN,b} variables, wi = asy-Xoz, and the
Lagrangian simplifiesto:

AgYaXpdgYeXg
2
withOfag £C 1£9g£E£M) and a,y, =0,

where only the variations that maximize interms of the a, remain (known as the Wolfe
Transformation). In this form the computational task can be greatly smplified. By
introducing an expression for the discriminating hyperplane: f; = wgXig - b = asyXoXiz -

b, the variational solution for L(a) reduces to the following set of relations (known as the
Karush-Kuhn-Tucker, or KKT, relations):

(i) &a=0,yfi=1
(i0<ag<C,yfi=1

L@)=a,-




(i) a=C,yfi=1
When the KKT relations are satisfied for al of the a, (with asy, = 0 maintained) the
solution isachieved. The constraint a,y, = 0 is satisfied for theinitial choice of
multipliers by setting the a's associated with the positive training instances to 1/N(+) and
the a's associated with the negatives to 1/N(-), where N(+) is the number of positives and
N(-) isthe number of negatives. Once the Wolfe transformation is performed it is
apparent that the training data (support vectors in particular, KKT class (ii) above) enter
into the Lagrangian solely viathe inner product Xigxiz. Likewise, the discriminator f;, and
KKT relations, are also dependent on the data solely viathe XXz inner product.
Throughout the rest of this section we consider: XipXj, ® F (Xi)oF (X%)b = Kjj .

The SVM discriminators are trained by solving their KKT relations using the SMO
procedure of [14]. The method described here follows the description of [14] and begins
by selecting a pair of Lagrange multipliers, { a;,a,}, where at least one of the multipliers
has aviolation of its associated KKT relations. For ssimplicity it is assumed in what
follows that the multipliers selected are those associated with the first and second feature
vectors: { X;,X} . The SMO procedure then "freezes' variationsin all but the two selected
Lagrange multipliers, permitting much of the computation to be circumvented by use of
analytical reductions:

@Ky tazK, +2aa,yy,Ky)
2

a,a,y, Ky,

- 5

with 3,7 = 3, and where Kj; = K(x;, X)), and v; = agyzKiz with 3 = 3. Due to the constraint

azyz = 0, we have therelation: a; + sa, =-?, where ? = yiagyr With 3 = 3 and s = yyy,.

Substituting the constraint to eliminate references to a;, and performi ng the variation on

. 7L (ap; ap=3)/?a, = (1 - 9) + ?a, + SAKy1 - Ky) + Sy1vi — YoV, Where ? = (2K 5 -

K11 - K). Since v; can be rewritten as v; = weXig - ar1y:Kiz - asy2Ki,, the variationa

maximum ?L (a,; ag = 3)/?a2 = 0 leads to the following update rule:

™ =g99 Y2 (W Xy, - Y1L' (Wp X5 - Y2))

Once a,"®" is obtained, the constraint a,"*" = C must be re-verified in conjunction with
the agyz = 0 condtraint. If the L (ay;az = 3) maximization leads to aa, new that grows too
large, the new a, must be "clipped" to the maximum value satisfying the constraints. For
example, if y; ? y,, then increasesin a, are matched by increasesin a;. So, depending on
whether a, or a; is nearer its maximum of C, we have max (a,) = argmir{ a,+ (C - a,) ;
a+ (C-ay}. Similar arguments provide the following boundary conditions:

(i) if s=-1, max(ay) = argmin{ a,; C + a,- a;}, and min(ay) = argmax{0; a, - a;}, and
(i) if s=+1, max(ay) = argmin{ C; a, + a3}, and min(a,) = argmax{0; a, + a; - C}.

In terms of the new a,"*" @' clipped as indicated above if necessary, the new a;
becomes:

L(a11a2;ab'33)=a1+az a,y\Vv, - a,y,V,

+ap,U,. -

new _ . old old new,clipped
a,  =a; +s(a, -a, ),



where s = y,y, as before. After the new a; and a, values are obtained there still remains
the task of obtaining the new b value. If the new a; isnot "clipped" then the update must
satisfy the non-boundary KKT relation: y,f(x,) = 1, i.e., f"" (X)) - y = 0. By relating f""
to f the following update on b is obtained:

blnew =b- (f new(xl) B yl) B yl(alnew B alold)Kll B yz(a;eW'C|ipped B agld)Klz

If a; isclipped but a; is not, the above argument holds for the a, multiplier and the new b
is:

b;ew =b- (f new(xz) B Y2) - Y2 @ 2neW B agld )K22 B yl(alnew’dlpped B alold) K
If both a; and a, values are clipped then we don’t have a unique solution for b. The Platt
convention wasto take:
bnew — + bZ

2

and this works well much of the time. Alternatively, Keerthi [15] has devised an aternate
formulation without this weakness, as have Crammer and Singer [16]. Perhaps just as
good as any exact solution for ‘b’ in the double-clipped scenario isto manage this special
case by regjecting the update and picking a new pair of alphasto update (in thisway only
unique ‘b’ updates are made). Alpha-selection variants are briefly discussed in the
Section after next.

Chunking

Chunking is described in [17] and [18], where use is made of sparsity and efficient testing
of the KKT conditions. Depending on the problem, many of the a’swill either be zero or
C. If we could easily identify a = 0, the corresponding cal culation could be avoided
without changing the value of the quadratic form. Then, at every chunking step we could
solve the problem by reducing tothea * 0 plusthe KKT violating a’s. The size of this
problem varies but isfinally equal to the number of non-zero a’s[19]. While this
technique is suitable for fairly large problemsit is still limited by the maximal number of
support vectorsthat it can handle. Thisis because for every chunk a quadratic optimizer
is still necessary. In [20] we describe a new method for distributed SVM learning that
eliminates many of these limitations on learning set size.

Binary classification scoring conventions
In this paper we adopt the following conventions:

SN = TP/(TP + FN)
SP = TP/(TP + FP)
nSN = TN/(TN + FP)
nSP = TN/(TN + FN)

Bioinformatics researchers, in gene prediction for example [21], take as primary pair:
{SN, SP}; ROC people, or people usng a Confusion Matrix diagram, take as primary
pair { SN, nSN}; Purity/Entropy researchers use { SP, nSP} ; no one uses the pair { nSN,
nSP} sinceitisatrivia label flip from being { SN, SP}. Label flipping leaves the
sengitivity { SN, nSN} pair the same, similarly for the specificity pair { SP, nSP}. In other



work we use the conventions that are commonly employed in gene prediction, and other
instances where the signal identification is biased towards identification of positives.
Specifically, they have two sets they focus on, the actual positives (genes) and the
predicted positives (gene predictions). For gene prediction there is either a gene, or there
isno-gene (i.e., junk, or background noise). In situations where your objective isto make
the sets of actual positives (AP) and predicted positives (PP) maximally overlap,
SP=gpecificity and SN=sensitivity are natural parameters and can be nicely described
with a prediction accuracy Venn diagram (similar to a confusion matrix). For the problem
here, we also describe the purity/entropy measures, in some examples, to be in-line with
other effortsin the clustering research community. Thus, we work with the pair { SP,nSP}
aswell as{ SP,SN}.

Unsupervised Learning (Clustering)

K-meansis asimple agorithm for clustering a set of un-labeled feature vectors X : { Xy,
Ya , Xn} that are drawn independently from the mixture density p(X|q) with a parameter

set g. At the heart of K-means algorithm is optimization of the sum-of-squared-error
criterion function (SSE), J; defined in definition SSE below.

Definition SSE (Sum-of-squared-error): Given acluster C;, the sum-of-squared, J; is
defined by

Ji = SxIx-miff,xi ¢,
and where m; isthe mean of the samples belonging to C;. The geometric interpretation of
this criterion function is that for agiven cluster C; the mean vector m; isthe centroid of

the cluster by minimizing the length of the vector x- m;. This can be shown by taking the
variation of J; with respect to the “centroid” m; and setting it zero,

1M 3 = 1M Sx (x- mi)T (x- my) = 25 (x- m;) =0
with minimum when equal to zero, wherex T C;in the sums, and solving for m;:

m; = 1/, Sxx

where n = |C| is the number of feature vectors belonging to C;. Thetotal SSE for all of
the clusters, Je isthe sum of SSE for individual clusters. The value of Je depends on the
cluster membership of the data, (i.e. the shape of the clusters), and the number of clusters.
The optimal clustering is the one that minimizes J. for a given number of clusters, k, and
K-meanstriesto do just that.

Kernel K-means [22] isanatura extension of K-means. Denote M, to be the cluster
assignment variables such that M;,, = 1 if and only if x; belongsto cluster n and O

otherwise. Asfor K-means, the goa isto minimizethe J,, for al clusters, n in feature
space, by trying to find k means F (m,,) such that each observation in the data set when

mapped using F iscloseto at least one of the means. Since the means lie in the span of
F (X1), ¥, F (X,), we can write them as:

Mn © F (M) = S, ohiF (X))
We can then subgtitute thisin the J; of definition (10) to obtain,



Jn = SxIF () - Ml = SxIF () - S giF (X)IF
= K(X, X) -2 S] g~|jK(X, Xj) + S” g’ligan(Xi) Xj);

wherexT €;inSy,jT 1.nin SJ., andijl 1.nin S.j . Weinitially assign random
feature vectors to means. Then Kernel K-means proceeds iteratively as follows: each new
remaining feature vectors, X1, is assigned to the closest mean py:

M, = Lifforalnt a, [F (Xua) - Ha"2 <|IF (X¢+2) - Iin"za

Mi1,2 = 0 otherwise. Or, in terms of the kernel function,

Mu1,e = Llifforaln? a, S,j GaiGajKij - SJ O Kirj < Sij OniGhiKjj - Sj Kty

Miu1,a = O otherwise, where Kj; © Kj; © K(x;, X;). The update rule for the mean vector is
then given by,

Mi+1a = Mo + D(F (Xt+1) - Ht,a),
where,

Do |\/|t+1|a/ S]__t+]_ Mia

SVM-Internal Clustering

The SYM-Internal approach to clustering was originally defined by [1]. Data points are
mapped by means of akernel to a high dimensiona feature space where we search for the
minimal enclosing sphere. In what follows, Keerthi’s method [15] is used to solve the
dual (see implementation).

The minimal enclosing sphere, when mapped back into the data space, can separate into
several components; each enclosing a separate cluster of points. The width of the kernel
(say Gaussian) controls the scale at which the datais probed while the soft margin
constant helpsto handle outliers and over-lapping clusters. The structure of adata set is
explored by varying these two parameters, maintaining a minimal number of support
vectors to assure smooth cluster boundaries.

The SYM-internal Lagrangian formulation is presented in what follows, where we adopt
the notation used by [23]. The SVYM-internal results are shown in the comparative study
described in the Results.

SVM-Internal Lagrangian Formulation
Let {xj} beadataset of N pointsin Rd (Input Space.) Similar to the nonlinear SVM

formulation, using anon-linear transformation f , we transform x to a high-dimensional
space — Kernel space — and look for the smallest enclosing sphere of radius R. Hence we
have:

I 04) - al? =R?forall j =1,...N
where a isthe center of the sphere. Soft constraints are incorporated by adding slack
variables ’/] :

If 04) - al?=R%+ 73 forall j =1,...N



Subject to: ’?J =0
We formulate the Lagrangian as.
L=R2-2jR(R%+ 7 - If (x) - al?) - ?j31 + C?}3
subject to: BJ = O,uj =0,
where Cisthe cost for outliers and therefore C? j?] isthe penalty term. Taking the
derivativeof L w.r.t. R, aand ? and setting them to zero we have:
7 =1,
a= ?jrz,-f (xj), and
Q:C—H.
Substituting the above equations back into the Lagrangian, we have the following dual
formalism:
W= 1- 2 iBRiKj; where 0= B = C; Kjj = exp(-[; - xj[[?/2s2)

subject to: ?il =1

By KKT relations we have:
A = 0and B(R% + 3 - If () - al?) =O.

In the feature space, l3] =Conly if ’?J > 0; henceit lies outside of the spherei.e. R2 <
[if (xj) -a ||2. This point becomes a bounded support vector or BSV. Similarly if ’/] =0,
and0< fZ, < C, thenit lies on the surface of the spherei.e. RZ = [if (xj) -a ||2. This point

becomes a support vector or SV. If ’>J =0, and B] =0, then R2 > li (Xj) -a ||2 and hence
this point is enclosed with-in the sphere.

SVM-External clustering

Although the internal approach to SVM clustering is only weakly biased towards the
shape of the clustersin feature space (the biasis for spherical clustersin the kernel
space), it still lacks robustness. In the case of most real-world problems and strongly
overlapping clusters, the SVM-Internal Clustering algorithm above can only delineate the
relatively small cluster cores. Additionally, the implementation of the formulation is
tightly coupled with the initial choice of kernel; hence the static nature of the formulation
and implementation does not accommodate numerous kernel tests. One way around this
excessive geometric constraint, and otherslike it, isto use an external-SVM clustering
algorithm (introduced in [1]) that clusters data vectors with no apriori knowledge of each
vector's class.

The agorithm works by first running aBinary SVM against a data set, with each vector
in the set randomly labeled, until the SYM converges. Choice of an appropriate kernel
and an acceptable sigma value will affect this convergence. After theinitial convergence
is achieved, the (sensitivity + specificity) will be low, likely near 1. The algorithm now
improves this result by iteratively re-labeling only the worst misclassified vectors, which
have confidence factor values beyond some threshold, followed by rerunning the SVM

on the newly relabeled data set. This continues until no more progress can be made.
Progressis determined by an increasing value of (sengitivity+specificity), hopefully



nearly reaching 2. This method provides away to cluster data sets without prior
knowledge of the data's clustering characteristics, or the number of clusters. In practice,
the initialization step, that arrives at the first SVM convergence, typically takes longer
than all subsequent partial re-labeling and SVM rerunning steps.

The SYM-Externa clustering approach is not biased towards the shape of the clusters,
and, unlike the internal approach, the formulation is not fixed to asingle kernel class.
Nevertheless, there are robustness and consistency issues that arise in the SVM-Externd
clustering approach. To rectify these issues, stabilization methods are described for
SVM-externa clustering that take into account the robustness required in realistic
applications.

Unsupervised Scoring: Cluster Entropy and Purity
Let pjj be the probability that an object in cluster i belongs to class j. Then entropy for the

cluster i, , can be written as:

€=- S] Pij log Pij ,wherej1 1.,

and Jisthe number of classes. Similarly, the purity p; for the cluster i can be expressed
as,

Pi = mMaxj pjj
Note that the probability that an object in cluster i belongsto classj can be written as the
number of objects of classj in cluster i, N , divided by the total number of objectsin
cluster i, n;, (i.e., pij = Nij / n;) Using this notation the overall validity, fy, of acluster i

using the measure f; (for either entropy or purity) is the weighted sum of that measure
over al clusters. Hence,

fv = UN S nff; ,whereil 1K,

and K is number of clusters and N is the total number of patterns. For our 2-class
clustering problem:

p1=max(SP, 1- SP), p,=max(nSP, 1- nSP)
and:
pv =max( (TP + TN)/(TP + FP + TN + FN); 1(TP + TN)/(TP + FP + TN + FN) )

Entropy isamore non-localized (holistic) measure than purity. Rather than considering
either the frequency of patterns that are within a class or the frequency of patterns that are
outside of a class, entropy, takes into account the entire distribution. Further details on
the entropic measure, however, are not discussed here.

Early SVM-external Results

The SYM-external approachl isfirst used on some simple synthetic data using some
simple kernels[1,2]. In Fig. 2 we see correct clustering very quickly with the polynomial
kernel (compared with no convergence when using the linear kernel).



In clustering experiments in [2], a challenging data set consisting of 8GC and 9GC DNA
hairpin datais examined (part of the data sets used in [13]). The hairpin dataset consists
of 400 elements. Half of the elements belong to each class. Although convergenceis
always achieved, convergence to a global optimum is not guaranteed. Figures 3a.and 3b
show the Purity and Entropy (with the RBF kernel) as afunction of Number of Iterations,
while Fig 3c shows the SSE as a function of Number of Iterations. Note: the stopping
criteriafor the algorithm is based on the unsuper vised measure of SSE (see Methods).
Comparison to fuzzy c-means and kernel k-means is shown on the same dataset (the solid
blue and black linesin Fig. 3aand 3b). In this early effort it was noted that random
perturbation and hybridized methods (with more traditional clustering methods) could
help stabilize the clustering method, but often at significant cost to its performance edge
over other clustering methods.

Thus, the SYM-external clustering method appears to offer very strong solutions about
haf the time — which alows for simple optimization by repeated clustering attempts
(external optimization), or optimization viainternal optimization, such as simulated
annealing. Comparative results with other clustering methods are shown in Fig. 4 (using
one of the most challenging pairs of DNA signals to resolve from analysis done in [1]). In
the Results presented in what follows, a simulated annealing formulation of the internal
optimization is shown.

Results

The SYM-Relabeler clustering algorithm is capable of clustering awide range of data
sets from ssimple multi-dimensional data sets (e.g., the Iris data set) to the complex 150-
dimensional Nanopore DNA hairpin data. These applications will now be described,
along with Results upon introducing simulated annealing stabilization to the clustering
process.

Iris Data Set

The Irisflower data set or Fisher’s Iris data set is a multivariate data set introduced by Sir
Ronald Aylmer Fisher in [24] as an example of discriminant analysis. The data set
consists of 50 samples from each of three species of Irisflowers (Iris setosa, Iris virginica
and Irisversicolor). Four features were measured from each sample, they are the length
and the width of sepal and petal (see Fig. 5). Based on the combination of the four
features, Fisher developed alinear discriminant model to predict classesto which each
sample belongs. We partly analyze the Iris data by performing one binary clustering
evaluation. (This can be iterated on the binary clustersidentified until no further clusters
can be resolved to arrive at a multiple cluster resolution method without specification of
cluster number, but that will not be discussed further here.) Fig. 6 shows the binary

cluster splitting and it precisely identifies one cluster and groups the other two,
demonstrating excellent performance.

DNA Hairpin Data Set
In[1, 25-27] it is shown that the alpha-hemolysin nanometer-scale channel can be used to

associate ionic current measurements with single-molecule channel blockades. In



particular, the nanopore dimensions are such that they alow for lengthy dsDNA terminus
measurements This is because the a pha-Hemolysin entry apertureis 2.6 nm in diameter
which islarge enough to capture approximately 10 base-pairs of dSDNA (the limiting
aperture prevents further passage).

The data set is chosen to be a symmetric sample of 200 8GC blockade signals (i.e.,
blockade signals due to 8 base-pair DNA hairpinsending in 5-GC-3') and 200 9GC
blockade signals. Each feature vector is 150 dimensional and normalized to satisfy the L;
(norm = 1) congtraint. Features from the 8 and 9 base-pair blockade signals were
extracted using Hidden Markov Models (for details, see [13]). Although convergence was
easily achieved with the SVYM Relabeler algorithm (see Methods), convergenceto a
global optimum was not guaranteed. Figure 7a & 7b illustrates the characteristic behavior
of different possible solutions with the data sets indicated. At the end of a successful run
of thisalgorithm it is hypothesized that the generalization error (testing error) will be
very small. In Figure 8 asmall value of Kernel-SSE (herein referred to as SSE) is shown
to provide us with areliable cluster validation measure.

The SYM-Relabeler dgorithm does not use an objective function and the hope is that by
running the algorithm in its purest form the resulting clusters are reliable solutions.
However, running this algorithm in this basic fashion does not consistently provide us
with a satisfying clustering solution. In fact, the solution space can be divided into three
sets. successful, local-optimum, and unsuccessful (see Fig. 7). Unsuccessful solutions and
local optima solutions are undesirable and the objective isto find a method to eliminate
their usage by simply re-clustering for objectively improved clustering (via SSE scoring,
for example). Since, the solutions in the unsuccessful set are expected to be easily
identified in any experiment that calculates the SSE of arandomly labeled data set, they
can be ssmply eliminated by post-processing. For instance, in asimilar experiment we
have randomly labeled the dataset 5000 times and cal culated the SSE distribution for the
experiment. The resulting distribution has a good fit to Johnson’s SB distribution and is
illustrated in the histogram of Fig. 9. Using a fitted distribution one can calculate the p-
value of agiven SSE. For a SSE threshold of 170.5 (accidentally very unlikely) we can
directly eliminate the unsuccessful set.

To substantially reduce the local optimum solutions, however, thresholding does not
scale well. One solution is ato use asimple hill climbing algorithm which isto run the
algorithm for a sufficiently long number of iterations to find the solution with the lowest
SSE vaue. To do this the clustering algorithm is run repeatedly and randomly initialized
every time. A solution is accepted as the best solution (so far) if it has alower SSE than
the previously recorded value. This can be avery slow learning process, and isafamiliar
scenario in statistical learning, and one of the popular solution in those situations presents
itself here as well — simulated annealing.

Refinement Methods Using Simulated Annealing

It is observed that random perturbation by flipping each label at some probability, ppet, IS
often sufficient to switch to another subspace where a better solution could be found.
(Note that ppet = 0.50 has the effect of random reinitialization and ppe = 1 flips the entire



labels.) The hope is that perturbation with pye: £ 0.50 resultsin afaster convergence.
Reliability can be achieved by searching through the solution space. To do this
efficiently, Monte Carlo Methods could be used by taking advantage of perturbation to
evaluate the neighboring configuration. The procedure described next uses a modified
version of Simulated Annealing to achieve this desired reliability.

As shown in Figure 10a, top panel, constant perturbation with p,e: = 0.10 resultsin a
local -optimum solution that could be otherwise avoided by using a perturbation function
depending on the number of iterations of unchanged SSE (Figure 10b, top panel). These
results were produced using an exponential cooling function, Ty, = b*T,, with b = 0.96
and Ty = 10. Theinitial temperature, T should be large enough to be comparable with the
change of SSE, DSSE, and therefore increase the randomness by making the Boltzman
factor e ™55/ 5 € while b (< 1) should be large enough to speed up the cooling effect.

Projection Clustering — clustering in Decision space

SVM methods for clustering are described that are based on the SVM'’s ahility to not only
classify, but also to give a confidence parameter on its classifications. Even without modifying
the label information (passive clustering), there is often strong clustering information in an SVM
training solution. One such instance occurs when one set, the positives, are aknown signd
species (or collection of species). If you have mixture data with known and unknown signal
species, and wish to identify (i.e., cluster) the unknown species, then an SVM training attempt
with the mixture taken as negatives leads to a cluster identification method viaan SVM
“projection-score” histogram. (i.e., cluster partitioning in Decision Space). Real channel blockade
data has been examined in this way, biotinylated DNA hairpin blockades comprised the positives,
and scored as a sharp peak at around 1.0 (see Fig. 11). The mixture signals seen after introduction
of streptavidin cluster with scores around 0.5, corresponding to (unbound) bictinylated DNA
hairpin signals, and signals that score < —1.0, corresponding to the streptavidin-bound
biotinylated DNA hairpins. SVM projection clustering can be a very powerful clustering tool in
and of itsdlf as can be seen in this cheminformatics application.

Discussion

The highest standard of performance for the SVM -based external clustering method
would bethat it do aswell at cluster grouping asits SVM classification counterpart (that
trains with the true label information). We occasionally see such excellent levels of
performance with SVM-external clustering, and the goal isto be able to single out these
cases when selecting clustering solutions via some stabilization method. Here we apply
the ssimulated annealing method and it appears to solve the stability problems encountered
in[2], at least on the data sets studied, to reliably yield excellent clustering solutions. If in
the general data clustering context and simulated annealing becomes unmanageable,
genetic algorithm tuning could a so be used. Early tests with SVM tuning using genetic
algorithms show strong performance (results not shown).

Cluster Validators

Thefitness of the cluster identified by the SVM-Relabeler algorithm is modeled using a
supervised measure, purity and an unsupervised measure, Kernel SSE. In other words, we
assume that the fitness of a cluster can be tracked using the compactness of that cluster as
the algorithm progresses. It is necessary to note that i) the notion of compactness asa



way to evaluate clusters favours spherical clusters over clusters spread over alinear
region, and ii) the known classes may not properly correspond to the geometric structure
of the clusters. However, this limitation does not normally affect our methodology, since
this limitation isimposed over the feature space, and with a choice of proper kernels and
parameters, feature space can be more likely to have higher variation in the lifted
dimensions such that spherical-cluster representations are accurate.

Fisher Validator
Scaling and transformation requires knowledge about the geometry of the problem at
hand. Thisinformation is often unavailable to data analysts. SVM-Relabeler can be
improved to take advantage of the discriminant function provided by the SVM solution.
In Fig. 8 we have shown the histogram of the decision space and demonstrated that the
method is effectively separating the clusters. Let my, mp, s; and s, be the means and
standard deviation of the decision space projection shown in Fig. 8. The function,

Jw) = g - myl /[(s)*+ ()]
for w isthe derived weight factor, can be used to validate the clusters. Generaly, larger
J(w) corresponds to better separation, while taking into account the compactness of the
clusters. Note: J(w) is used as the objective function of Fisher’s discriminants [22].

Tuning SVM-Relabeler

Kernel selection is highly data set dependant and so far accurate methods for choosing
kernels are not automated [28-31] (although initial efforts using genetic agorithm tuning,
with the channel current data, appear to be successful). The SYM-Relabeler results
produced in this work assume the value of 1.5 for the SVM regularization constant, C,

and make use of the Absdiff, Sentropic, and Gaussian kernels. When working with

similar datain a standard single-pass SVM classification, the typical settings used are C =
10.0, with a significantly shifted optimum in kernel parameter tuning. The choices of the
SVM regularization constant, C, has profoundly different utility when used in the context
of SYM-Relabeler. The choice of C in the supervised SVM controls the trade off between
the training error and the generalization error, and therefore, it effectively controls the
soft margin. Since this margin is not known to us when clustering, the value of C hasto

be chosen empirically. While we generdly find C >= 10 to be good for classification, for
SVM clustering, tuning to larger values of C tends to reduce performance much sooner
than with SYM classification. Thisis because alarger C value reduces the number of
misclassifications (boundary support vectors) accessible to the SVM-Relabeler algorithm
(see Methods), where a specified (tuned) percentage of boundary support vectors have
their labels flipped. It is observed that the percentage of label flipping is stable, however,
given agood choice of kernel and parameters, i.e., when everything elseis tuned
properly, small changesin the relabeling percentage are not seen to alter clustering
performance significantly.

Conclusion

In thiswork, new methods for clustering are explored. The method uses the Support
Vector Machine' s discriminant learning and confidence evaluation, and does not
explicitly depend on an objective function. The solution yielded by this algorithm is
evaluated using a criterion function, but it remains external to the algorithm. Simulated is



successfully used to stabilize this process on the datasets studied. The hope isthat this
work provides a new perspective on unsupervised learning processes.

Method

SVM-Relabeler: An External Method of SVM Clustering

Although the internal approach to SVM (see svmrinternal) clustering isonly weakly
biased towards the shape of the clusters in the input space (the biasis for spherical
clustersin the feature space), it still lacks robustness. In the case of most real-world
problems and strongly overlapping clusters, the SVM- Interna Clustering algorithm
above can only delineate the relatively small cluster cores. Additionally, the
implementation of the formulation istightly coupled with the initial choice of kernel;
hence the formulation does not accommodate numerous kernel tests. We avoid this
constraint by making use of an external-SVM clustering algorithm (called SVM-
Relabeler in[2]). SVM-Relabeler clusters data vectors with no a priori knowledge of
each vector’s class. SVM-Relabeler algorithm works by first running a Binary SVM
against a data set, with each vector in the set randomly labeled, until the SVM converges.
The SYM-Relabeler algorithm now improves convergent SVM label result by iteratively
re-labeling only the worst misclassified vectors, which have confidence factor values
beyond some threshold, followed by rerunning the SVM on the newly relabeled data set.
This continues until no further progress can be made.

Unsupervised Cluster Validator
Unlike purity, unsupervised eval uation techniques do not have external class information.

These measures are often optimization functions in many clustering algorithms. Sum-of-
Squared-Error, SSE, measures the compactness of a single cluster, and other measures
evauate the isolation of a cluster from other clusters. Standard SSE is typically calculated
in the input space, which does not necessarily correspond with a good cluster measurein
the kernel feature space. Below, we show the unsupervised cluster validator that worksin
the kernel’ s feature space instead.

Sum-of-Squared-Error, SSE, in input space, can be written as:

Je= 1/23 ni S,whereil 1.K,
and where for any similarity function s(x, x¢
Si=1(n)* Sx Sxe¢sx, x9 , wherex, x¢1 D
We use Euclidean distance as the measure of similarity. Hence,

s(x, x4 = [ - x¢f

Asbefore let F : D;? F and K(x,y) = {F (x), F (y)}, then Je can be rewritten (thistime
feature space) as.

Je= S Ji,whereil 1.K,



ad

Ji = Sx K(xx) — 1/n Sx Sxe k(x,x9, where x, x¢1 D;

Note that SSE, like any other unsupervised criterion, may not reveal the true underlying
clusters, since the Euclidean distance simplification favors spherically shaped clusters.
However, this geometry is often imposed after the data is mapped to the higher
dimensional feature space, so this measure is often acceptable.
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Figures

Figure 1. Hyperplane Separability. A genera hyperplane is shown with its decision-
function feature-space splitting role implicit in the indicated margin width and offset
from the origin, also noted is misclassified case for the general formalism.

Figure 2. A test of the SVM-external clustering algorithm, using a simple kernel.
The randomized label data set clearly fallsinto two clear clusters, one central, one at
fixed radius, both radially symmetric about the origin. The linear kernel (i.e., the dot-
product non-kernel case) fails to converge to a solution. The polynomial kernel does
converge, and very quickly, within 3 iterations, as can be seen.

Figure 3. SVM-external clustering results from [2]. () and (b) show the boost in
Purity and Entropy as a function of Number of Iterations of the Re-labeler algorithm. ()
shows that SSE, as an unsupervised measure, provides agood indicator in that
improvements in SSE correlate strongly with improvements in purity and entropy . The
blue and black lines are the result of running fuzzy c-mean and kernel k-mean on the
same dataset.

Figure 4. Clustering performance comparisons: SVM-external clustering
compared with explicit objective function clustering methods. In those cases where
drop percentages are indicated, tuning was used to drop ‘weaker’ data. The figure shows
the nanopore detector blockade signal clustering resolution where the blockades are due
to individual molecular capture-events with 9AT and 9CG DNA hairpin molecules. This
was avery difficult data set to resolve with the SVM classifier — even when * bag-label ed’
training datais used (i.e., bag-labeled from experiments run only with one or the other
molecule introduced). The label 9AT is used for the control molecule that is nine base-
pairsin length and ends with 5'-AT-3' and has a4dT loop, the same for 9CG, except it
has terminal base-pair 5'-CG-3'. The SVYM-externad clustering method consistently out-
performs the other methods (see [1] for further details on this effort).

Figure 5. Fisher’s Iris data set. The Iris data set consists of 50 samples from each of
three species of Irisflowers (Iris setosa, Irisvirginicaand Iris versicolor). Four features
were measured from each sample, they are the length and the width of sepal and petal .

Figure 6. Recovery of main binary splitting in three-species Iris data set. Thefigure
shows the labeling recovered after doing one binary clustering operation (on the full
dataset). The Gaussian kernel was used with =2.0,C=15,ands =0.5.

Figure 7. (a) Kernel SSE validation during SVM-external clustering with 8GC and
9GC DNA hairpin blockade data. There are 200 samples of each, where each sample
results in a 150-component feature vector that is normalized to 1.0. Plots show Kernel
SSE values (Absdiff kernel with s = 1.8) asthe SVM-external clustering algorithm
iterates (post initial convergence).

Figure 7. (b) Purity scoring during operation of Kernel SSE validator. Plots show



Purity values as the SVM-external clustering algorithm iterates (post initial convergence).

Figure 8. (a) The histogram of the projection of feature vectors on a unit vector
orthogonal to the decision hyperplane. Features are classified according to the sign of

this projection. As can be seen, by iteration 17 the data set has been clearly separated. For
these experiments: Absdiff kernel (with s = 2.0), C = 1.5, and relabeling factor = 0.15.

Figure 8. (b) The learning plots. The plots show iteration by iteration the view of the
experiment shown in Fig. 8a. as can be seen, there is correlated decrease in Kernel SSE
value, test error, and training error, and simultaneous increase in the purity.

Figure 9. The distribution of Kernel SSE values over random binary-labeled data.
The histogram shows what to expect from random labeling on the training problem
shownin Fig. 7, and provides a validator criterion on clustering solutions when they fall
well outside the support of the random label SSE values. Again, use is made of the
Absdiff kernel with s = 1.8. The best-fitted Distribution we could identify was Johnson’s
SB distribution, and that is the curve that is shown.

Figure 10. (a) Simulated annealing with constant perturbation. The behavior of the
simulated annealing algorithm using a constant perturbation functionsis shown (the
variable case isin the net figure). The top panel shows the learning behavior when
constant 10% perturbation is applied at every iteration. The bottom panel shows the
annealing process.

Figure 10. (b) Simulated annealing with variable perturbation. The behavior of the
simulated annealing algorithm using a variable perturbation functions is shown. The top
panel shows the learning behavior when constant 10% perturbation is applied at every
iteration along with boosts in the perturbation probability based on the number of
iterations during which SSE remained constant (Bottom panel). (The timing of the
annealing process is shown in 10a Bottom panel.)

Figure 11. Projection clustering with channel current blockade data. A nanopore
detector experiment is performed in which two reactants are introduced: a biotinylated
DNA hairpin and streptavidin. Only the biotinylated DNA is likely to be observed at the
channel, or the bound streptavidin — biotinylated DNA, due to the negatively charged
DNA molecules. The biotinylated DNA hairpin signal by itself iswell studied so makes
an excellent example of the positives to use in the projection clustering. The negatives
consist of the mixture file observations made upon introduction of streptavidin, in excess,
to a solution in the analyte chamber that contains only biotinylated DNA hairpins. Bound
complexes are hypothesized to form upon introduction of the streptavidin, with a new
signal class emerging, as can be seen, along with some of the old signal class. The
biotinylated DNA hairpin blockades comprised the positives, and scored as a sharp peak
at around 1.0. The mixture signals seen after introduction of streptavidin cluster with
scores around 0.5, corresponding to (unbound) biotinylated DNA hairpin signals, and
signals that score < —1.0, are hypothesized to correspond to the streptavidin-bound
biotinylated DNA hairpins.
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