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Abstract 

Background 
The goal of clustering analysis is to partition objects into groups, such that members of 
each group are more “similar” to each other than the members of other groups. In this 
paper we describe methods for using (supervised) SVM classifiers to perform 
unsupervised clustering and partially supervised clustering (projection). The former is 
accomplished by iteratively changing some of the label information and redoing the SVM 
training, the latter has no label alteration, but requires a set specified as the positives (a 
bag model, so partially supervised).  

Results 
The Results focus on refinements to the SVM-based clustering methods introduced in 
[1,2]. We demonstrate that it is possible to stabilize the SVM-external clustering method 
using simulated annealing.  

Conclusions 
The highest standard of performance for the SVM-based external clustering method 
would be that it do as well at cluster grouping as its SVM classification counterpart (that 
trains with the true label information). We occasionally see such excellent levels of 
performance with SVM-external clustering, and the goal is to be able to single out these 
cases when selecting clustering solutions via some stabilization method. Here we apply 
the simulated annealing method and it appears to solve the stability problems encountered 
in [2], at least on the data sets studied, to reliably yield excellent clustering solutions. 
 
 



Introduction 
 
In this paper we describe methods for using SVM classifiers to perform unsupervised 
clustering and partially supervised clustering (projection). The former is accomplished by 
iteratively changing some of the label information and re-clustering, the latter has no 
label alteration, but requires a set to specify as the positives (a bag model, so partially 
supervised). We describe improvements to the SVM-based clustering methods introduced 
in [1,2], most notable being stabilization of the SVM-external clustering method using 
simulated annealing. The SVM-based clustering process we use involves no explicit use 
of an objective function. An objective function may be thought of as being introduced 
implicitly, perhaps, in the choice of cluster validator, SVM kernel, and SVM cutoff 
parameters. Even so, such an introduction of objective function is evidently weakly 
linked in that several validators, kernels, parameters have been used and all perform 
comparable to each other when optimized with the simulated-annealing learning 
stabilization. Given the significant strengths seen with many of the solutions of the SVM-
external clustering method described in 1,2], and summarized in the Background, a 
stabilization to always use these best solutions would provide a robust clustering method. 
 
In what follows we provide a brief background on various matters relevant to the design 
of the experiment (as will be shown in he Methods and Results): (1) the theory of 
clustering; (2) the theory of classification; (3) the generalization to kernel feature spaces; 
(4) kernel construction using polarization; (5) supervised learning; and (6) unsupervised 
learning. In the unsupervised learning background a brief synopsis of prior work with 
SVM-external clustering is provided, as this is particularly relevant to what we show in 
the Results. 
 
The theory of clustering 
The goal of clustering analysis is to partition objects into groups, such that members of 
each group are more “similar” to each other than the members of other groups. Similarity, 
however, is determined subjectively as it does not have a universally agreeable upon 
definition. In [3] the author suggests a formal perspective on the difficulty in finding such 
a unification, in the form of an impossibility theorem: for a set of three simple properties 
described in [3], there is no clustering function satisfying all three. Furthermore, the 
author demonstrates that relaxations of these properties expose some of the interesting 
(and unavoidable) trade-offs at work in well-studied clustering techniques such as single-
linkage, sum-of-pairs, k-means, and k-median.  
 
Ideally, one would like to solve the clustering problem given all the known and unknown 
objective functions. This is provably an NP-Hard problem [4]. This brings us to the work 
presented here, which seeks to provide a new perspective on clustering by introducing an 
algorithm that does not require an objective function. Hence, it does not inherit the 
limitations of an embedded objective function. We propose an algorithm that is capable 
of suggesting solutions that can be later evaluated using a variety of cluster validators. 
 
The theory of classification 
The problem of classification is to find a general rule to match a set of objects, or 



observations, to their appropriate classes. In its simplest form the classifier’s task is to 

estimate a function f : RN ?  {±1}, given examples and their {±1} classifications: 

(x1, y1), . . . , (xn, yn) ∈ RN × Y, Y = {±1}, 
where (x, y) are assumed to be independent and identically distributed training data 
drawn from (unknown) probability distribution P(x, y). f  perfectly classifies if y = +1 

when f(x) = 0, with  y = -1 otherwise, where this holds for all of the n training instances. 
 
In the loss-function formalism, the optimal f is obtained by minimizing the expected risk 
function (expected error) [5]: 

R[f] = ∫ l(f(x), y)dP(x, y) 

where l is a suitable loss function. For instance, in the case of’ “0/1 loss” 
l(f(x), y) = Θ(−yf(x)) 

where Θ is the Heaviside function (Θ(z) = 0 for z < 0 and Θ(z) = 1 otherwise.) In most 
realistic cases P(x, y) is unknown and therefore the risk function above cannot be used to 
find the optimum function f. To overcome this fundamental limitation one has to use the 
information hidden in the limited training examples and the properties of the function 
class F to approximate this function. Hence, instead of minimizing the expected risk, one 
minimizes the empirical risk 

Remp[f] = 1/n Σ l(f(xi), y), with sum on i ∈ 1..n. 
The learning machine can ensure that for n→∞ the empirical risk will asymptotically 
converge to expected risk, but for a small training set the deviations are often large. This 
leads to a phenomenon called “over-fitting,” where a small generalization error can’t be 
obtained by simply minimizing the training error. One way to avoid the over-fitting 
dilemma is to restrict the complexity of the function class [6]. The intuition, which will 
be formalized in the following, is that a “simple” (e.g., linear) function that explains most 
of the data is preferable to a complex one (i.e., an application of Occam’s razor). This is 
often introduced via a regularization term that limits the complexity of the function class 
used by the learning machine [7].  
 
A specific way of controlling the complexity of a function class is described by the 
Vapnik-Chervonenkis (VC) theory and the structural risk minimization (SRM) principle 
[6,8]. Here the concept of complexity is captured by the VC dimension h of the function 
class F from which the estimate f is chosen. The following set of definitions indicate the 
role of structural risk minimization (SRM) -- in the SVM construction that follows SRM 
is implemented via maximum margin clustering. 
 
Definition 1 (Shattering) A Learning Machine f can shatter a set of points x1, x2, . . . , xn 
if and only if for every possible training set of the form (x1, y1), . . . , (xn, yn) there exists 
some parameter set that gets zero training error. 
 
Definition 2 (VC Dimension) Given a learning machine f, the VC-dimension h is the 
maximum number of points that can be arranged so that f shatter them. Roughly 
speaking, the VC dimension measures how many (training) points can be shattered (i.e., 



separated) for all possible labelings using functions of the class. Constructing a nested 
family of function classes F1 ⊂ … ⊂ Fk with non-decreasing VC dimension the SRM 
principle proceeds as follows: 
 
Definition 3 (SRM Principle) Let f1 ,…, fk be the solutions of the empirical risk 
minimization in the function classes Fi. SRM chooses the function class Fi (and the 
function fi ) such that an upper bound on the generalization error is minimized which can 
be computed making use of theorems such as the following one. 
 
Theorem 4 (Expected Risk Upper bound) Let h denote the VC dimension of the function 
class F and let Remp be defined by using the “0/1 loss.” For all delta > 0 and f ∈ F the 
inequality bounding the risk 

R[f] = Remp[f] + [(h/n)(ln (2n/h) + 1) − (1/n) ln (δ/4)]1/2 
holds with probability of at least 1−δ for n > h ([6,8]). Note: this bound is only an 
example and similar formulations are available for other loss functions [8] and other 
complexity measures, e.g., entropy numbers [9].  
 
Thus, in the effort to minimize the generalization error R[f] two extremes can arise: i) a 
very small function class (like F1 ) yields a vanishing square root term, but a large 
training error might remain, while ii) a huge function class (like Fk) may give a vanishing 
empirical error but a large square root term. The best class is usually in between, as one 
would like to obtain a function that explains the data quite well and to have a small risk in 
obtaining that function. This is very much in analogy to the bias-variance dilemma 
scenario described for neural networks (see, e.g., [10]).  
 
What these bounds universally indicate is that the minimized generalization error is 
bounded by a balance between training error and size of function class (i.e., structural 
risk). The standard SVM formulation (described below) directly implements such an 
optimization problem by balancing such terms using a Lagrangian formalism. Before 
proceeding to the SVM derivation, however, a brief description of kernel spaces is 
introduced as they are critical (and part of the novelty) in the description of the SVM 
Lagrangian formulations that follow, and in the Results. 
 
Generalization to kernel feature spaces 
The so-called curse of dimensionality from statistics says that the difficulty of an 
estimation problem increases drastically with the dimension N of the space, since in 
principle as N increases, the number of required patterns to sample grows exponentially. 
This statement may cast doubts on using higher dimensional feature vectors as input to 
learning machines. This must be balanced with results from statistical learning theory [6], 
however, that show that the likelihood of data separability by linear learning machines is 
proportional to their dimensionality. 
 
Thus, instead of working in the RN , one can design algorithms to work in feature space, 
F, where the data has much higher dimension (but with sufficiently small function class). 
This can be described via the following mapping 

Φ  : RN → F ; x → Φ(x). 



Consider the prior training description with data x1, . . . , xn ∈ RN  is mapped into a 
potentially much higher dimensional feature space F. For a given learning algorithm one 
now considers the same algorithm in F instead of RN . Hence, the learning machine 
works with the following: 

(Φ(x1), y1), . . . , (Φ(xn), yn) ∈ F × Y, Y = {±1} 
It is important to note that this mapping is also implicitly done for (one hidden layer) 
neural networks, radial basis networks [11] and boosting algorithms [12] where the input 
data is mapped to some representation given by the hidden layer, the radial basis function 
(RBF) bumps or the hypotheses space, respectively. 
 
As mentioned above, the dimensionality of the data does not detract us from finding a 
good solution, but it is rather the complexity of the function class F that contributes the 
most to the complexity of the problem. Similarly, in practice, one need never know the 
mapping function Φ . Therefore, the complexity and intractability of computing the actual 
mapping is also irrelevant to the complexity of the problem of classification. To this end, 
algorithms are transformed to take advantage of this aspect of the method, which we call 
the ‘Kernel Trick’. 
 
Kernel Trick Definition: Achieve the following two objectives when using kernels with a 
learning machine: 
1) Rewrite the learning algorithm so that instead of using Φ(x1) and Φ(x2) directly, it only 

uses the dot-product K(x1, x2) = Φ(x1) · Φ(x2), and 
2) Compute the dot-products K(x1, x2) in a manner that avoids computing Φ(x1) and 
Φ(x2) explicitly. 
 
The Kernel Trick in definition will be used in the SVM derivation that follows. Note: The 
Kernel Trick is only possible if the key equations in the learning machine involving the 

training data x are grouped via an inner products, x1 · x2, such that the occurrences of Φ  
are, similarly, always paired in inner product terms. (Then, in turn, inner products on 
Φ are replaced with kernel expressions). Even though we don’t need to compute Φ  for a 
given choice of kernel, we still need to know that such a Φ  exists for this to be a standard 
kernel generalization to the formalism. This is accomplished using Mercer’s Condition, 
which describes the test to determine if there exists a mapping Φ  for the indicated kernel: 
 
Mercer’s Condition: For a given function, K, there exists a mapping Φ  and an expansion: 

K(x1, x2) =Σi Φ(x1)iΦ(x2)i 

if and only if, for any function g(x) such that ∫ g(x)2dx is finite, then 

∫ ∫ K(x1, x2)g(x1)g(x2)dx1dx2 = 0, 
i.e., the kernel is positive definite [5]. 
 
Thus, the kernel generalization is broadly applicable to kernels that are positive definite. 
Note: there is a further subtlety upon implementation -- a kernel may not be positive 
definite but may have a dense subset of finite training-set kernel matrices that are positive 



definite. We have found that the entropic kernel described in what follows is positive 
definite for all the training sets examined -- where the positive definite property was 
assumed to hold if the kernel training matrix successfully passed a million g(x) function 
(Mercer) tests. Whether the entropic kernel is fully analytically positive definite on its 
restricted domain is unresolved at this time (see [1]). 
 
Kernel construction using polarization 
The kernels used in the analysis are based on a family of previously developed kernels 
[1,13], here referred to as ’Occam’s Razor’, or ‘Razor’ kernels. As will be seen, the 
Gaussian kernel is included in the family of Razor kernels. All of the Razor kernels 
examined perform strongly on the channel current data analyzed, with some regularly 
outperforming the Gaussian Kernel itself. The kernels fall into two classes: regularized 
distance (squared) kernels; and regularized information divergence kernels. The first set 
of kernels strongly models data with classic, geometric, attributes or interpretation. The 
second set of kernels is constrained to operate on (R+)N, the feature space of positive, 
non-zero, real-valued feature vector components. The space of the latter kernels is often 
also restricted to feature vectors obeying an L1-norm = 1 constraint, i.e., the feature 
vector is a discrete probability vector.  
 

Given any metric space (χ, d) one can build a positive-definite kernel of the form e−λd2. 
Conversely, any positive definite kernel with form  e−λd2 must have a ‘d’ that is a metric  
(this is Mercer’s condition in another form). This suggests that the ‘simplest’ kernel is the 
Gaussian kernel, since the ‘simplest’ distance, the Euclidean distance, is used. Functional 
variations on the Gaussian kernel are described in what follows (see [1] for further 
details), including variations that are no-longer represented as distances (non-metric), but 
that operate on a constrained domain (so not clear if Mercer’s condition is violated). In 
what follows a quick synopsis is given of the novel kernels that are used – two of these 
kernels regularly outperformed the Gaussian kernel (and all other kernels), as will be 
shown in the following. 
 
Occam’s Razor Kernels 
The regularized distance kernels are based on the notion of distance. An example of such 
is the Gaussian kernel (with Euclidian distance). In what follows, we reduce the Gaussian 
kernel via a log operation and examine the partials of the log kernel – a “polarization” 
split in the partial derivatives is clearly exhibited: 
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In what follows, suppose we attempt to modify the form of the kernel at the level of its 
(symmetric) polarization. The polarization has two attributes, sign and magnitude. This 
suggests first reducing to the more primitive form of the sign attribute alone (e.g., all 
have unit magnitude). So, instead of discrimination governed solely by the sign of 

)( ii yx − , we use just the “sign” of )( ii yx − , i.e., the signum function : 

Suppose )sgn(
1),(ln

2 ii
i

yx
x

yxK
−−=

∂
∂

σ

vv
          )sgn(

||
ii

i

ii yx
x

yx
−=

∂
−∂

      

              )sgn(
1),(ln

2 ii
i

yx
y

yxK
−+=

∂
∂

σ

vv
         

i

ii
ii

i

ii

x
yx

xy
y

yx
∂

−∂
−=−=

∂
−∂ ||

)sgn(
||

 

Then recover: ∑ −−=
i

ii yxK ||
1

ln 2σ
, which is another well-known kernel, the Laplace 

kernel: )||exp(),(),( 2σ∑ −−==
i

iiLLaplace yxyxKyxK vvvv . This is the “Occam’s razor” 

kernel for feature discrimination that assumes only a difference-based (geometric) 
topology (nearness but no magnitudes) on the features. The Occam’s razor that assumes a 
difference-based geometry on the features (so now not just sign, but magnitude), could 
have the Gaussian polarization, as a reasonable representative and, thus, arrive back to 
the Gaussian kernel. Alternatively, another ‘simple’ formulation would be to seek a 
polarization term that has an integrable factor that does the opposite of increasing the 
magnitude of polarization with feature vector difference: boosting the polarization on 
feature vectors with smaller differences instead. These different cases are described in the 
following: 
 

2)(
),(ln

σii
i

G xy
x

yxK
−=

∂
∂ vv

 ⇒ )2)(exp(),( 22 σ∑ −−=
i

iiG yxyxK vv  

                           ⇓   sign alone used for polarization of discrimination 

                          sgn 2)( σii xy −  ⇒ )||exp(),( 2σ∑ −−=
i

iiL yxyxK vv  

                           ⇓   sign with integrable boost factor for polarization of discrimination 

                         
∑ −

−

i
ii

ii

xy

xy

||

)(sgn 2σ
 ⇒ )||2exp(),( 2σ∑ −−=

i
iiI yxyxK vv , 

 
where KI is the ‘Indicator’ or ‘Absdiff’ kernel [1,13].  
 
We use a similar basis for construction of an entirely different family of kernel functions 
(based on an exponentially regularized information divergence). Instead of difference 
polarization, with (x−y) less than or greater than zero, there is also ratio polarization, with 
x/y less than or greater than 1, with the unit value subtracted or functionally mapped to 
zero: )1/( −ii xy does the former and ln( ii xy ) does the latter. Together they are found 
to be directly integrable: 
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The entropic kernel is so named because of its alternate form 

)2)]||()||([exp( 2σyxDxyDK entropic
vvvv +−= , where D(x||y) is the Kullback-Leibler 

divergence, otherwise known as relative entropy. Thus, the Occam’s razor kernel 
appropriate to divergence-based differences on an information theoretic space is the 
entropic kernel (parallels the Gaussian kernel in geometric space). In all of the dataruns 
with the probability feature vector data considered here, the two best-performing kernels 
are the entropic and the Indicator ‘Adbsdiff’ kernels, with the Gaussian trailing 
noticeably in performance (but still outperforming other methods such as polynomial and 
dot product). 
 
Supervised Learning 
An initial, simple, supervised learning scenario is to assume that the training data is 
separable by a hyperplane, expressed via a hyperplane separability function, or learning 
machine: 

f(x) = (ω•x) − b. 
In [6] it is shown that the for this class of hyperplanes the VC dimension can be bounded 
in terms of another quantity, the margin. The margin is defined as the minimal distance of 
a sample to the decision surface (see section 2.5.2). It is rather intuitive that the thicker 
the margin the better the training would be, and in fact this quantity could be measured 
by the length of the weight vector ω . Since we begin by assuming that the training data is 
separable we can rescale and normalize ω  such that the points closest to the hyperplane is 
a unit away from the hyperplane (i.e., the canonical representation of the hyperplane). 
This can be done by requiring that |(ω•x) − b)| = 1. Now consider two samples x1 and x2 
from different classes with (ω•x1) − b = 1 and (ω•x2) − b = −1, respectively. The margin 
is given by the distance of these two points, measured perpendicular to the hyperplane 
and therefore, ω /||ω ||2•(x1−x2) = 2/||ω ||2 (see Fig. 1). This will be used in a Lagrangian 
optimization in what follows to yield the standard binary SVM. 
 
Binary Support Vector Machines 
The binary SVM is the supervised learning method that is co-opted to perform the 
unsupervised SVM-based clustering we describe in the Results and Methods. In the 
binary SVM implementation described in what follows we follow the notation and 
conventions used previously [1]. Feature vectors are denoted by xik, where index i labels 
the feature vectors (1 = i = M) and index k labels the N feature vector components (1 = k 
= N).  For the binary SVM, labeling of training data is done using label variable yi = ±1 
(with sign according to whether the training instance was from the positive or negative 



class).  For hyperplane separability, elements of the training set must satisfy the 
following conditions: wß xiß - b = +1 for i such that yi = +1, and wß xiß - b = -1 for yi = -1, 
for some values of the coefficients w1,..., wN, and b (using the convention of implied 
sum on repeated Greek indices).  This can be written more concisely as: yi(wß xiß - b) - 
1 = 0.  Data points that satisfy the equality in the above are known as "support vectors" 
(or "active constraints"). 
 
Once training is complete, discrimination is based solely on position relative to the 
discriminating hyperplane: wß xiß - b = 0.  The boundary hyperplanes on the two classes 
of data are separated by a distance 2/w, known as the "margin," where w2 = wßwß.  By 
increasing the margin between the separated data as much as possible the optimal 
separating hyperplane is obtained.  In the usual SVM formulation, the goal to maximize 
w-1 is restated as the goal to minimize w2. The Lagrangian variational formulation then 
selects an optimum defined at a saddle point of  
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The saddle point is obtained by minimizing with respect to {w1,...,wN,b} and maximizing 
with respect to {a1, ..., aM}.  If yi(wß xiß - b) - 1 = 0, then maximization on a i is achieved 
for a i = 0. If yi(wß xiß - b) - 1 = 0, then there is no constraint on a i.  If yi(wß xiß - b) - 1 < 0, 
there is a constraint violation, and a i ?  8 .  If absolute separability is possible, the last 
case will eventually be eliminated for all a i, otherwise it is natural to limit the size of a i 

by some constant upper bound, i.e., max(a i) = C, for all i.  This is equivalent to another 
set of inequality constraints with a i = C. Introducing sets of Lagrange multipliers, ?? (see 
Fig. 1) and µ? (1 = ? = M), to achieve this, the Lagrangian becomes: 
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At the variational minimum on the {w1,...,wN,b} variables, wß = a?y?x?ß, and the 
Lagrangian simplifies to: 
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with C≤≤ γα0  )1( M≤≤ γ and 0=γγα y , 
where only the variations that maximize in terms of the a? remain (known as the Wolfe 
Transformation). In this form the computational task can be greatly simplified. By 
introducing an expression for the discriminating hyperplane: fi = wß xiß - b = a?y?x?ßxiß - 
b, the variational solution for L(a) reduces to the following set of relations (known as the 
Karush-Kuhn-Tucker, or KKT, relations):  

(i)  a i = 0 , yifi = 1 
(ii) 0 < a i < C , yifi = 1 



(iii) a i = C , yifi = 1 
When the KKT relations are satisfied for all of the a? (with a?y? = 0 maintained) the 
solution is achieved.  The constraint a?y? = 0 is satisfied for the initial choice of 
multipliers by setting the a's associated with the positive training instances to 1/N(+) and 
the a's associated with the negatives to 1/N(-), where N(+) is the number of positives and 
N(-) is the number of negatives.  Once the Wolfe transformation is performed it is 
apparent that the training data (support vectors in particular, KKT class (ii) above) enter 
into the Lagrangian solely via the inner product xißxjß. Likewise, the discriminator fi, and 
KKT relations, are also dependent on the data solely via the xißxjß inner product.  
Throughout the rest of this section we consider: xiβxjβ → Φ(xi)βΦ(xj)β = Kij .  
 
The SVM discriminators are trained by solving their KKT relations using the SMO 
procedure of [14]. The method described here follows the description of [14] and begins 
by selecting a pair of Lagrange multipliers, {a1,a2}, where at least one of the multipliers 
has a violation of its associated KKT relations.  For simplicity it is assumed in what 
follows that the multipliers selected are those associated with the first and second feature 
vectors: {x1,x2}. The SMO procedure then "freezes" variations in all but the two selected 
Lagrange multipliers, permitting much of the computation to be circumvented by use of 
analytical reductions: 
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with ß',?' = 3, and where Kij = K(xi, xj), and vi = aß'yß'Kiß' with ß' = 3. Due to the constraint 
aßyß = 0, we have the relation: a1 + sa2 = -?, where ? = y1aß'yß' with ß' = 3 and s = y1y2. 
Substituting the constraint to eliminate references to a1, and performing the variation on 
a2: ?L (a2 ; aß' = 3)/?a2 = (1 - s) + ?a2 + s?(K11 - K22) + sy1v1 – y2v2, where ? = (2K12 - 
K11 - K22). Since vi can be rewritten as vi = wßxiß - a1y1Ki1 - a2y2Ki2, the variational 
maximum ?L (a2 ; aß' = 3)/?a2 = 0 leads to the following update rule: 
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Once a2
new is obtained, the constraint a2

new = C must be re-verified in conjunction with 
the aßyß = 0 constraint.  If the L (a2;aß' = 3) maximization leads to a a2 new that grows too 
large, the new a2 must be "clipped" to the maximum value satisfying the constraints.  For 
example, if y1 ?  y2, then increases in a2 are matched by increases in a1. So, depending on 
whether a2 or a1 is nearer its maximum of C, we have max (a2) = argmin{a2 + (C - a2) ; 
a2 + (C - a1)}.  Similar arguments provide the following boundary conditions: 
(i) if s = -1, max(a2) = argmin{a2 ; C + a2 - a1}, and min(a2) = argmax{0 ; a2 - a1}, and 
(ii) if s = +1, max(a2) = argmin{C ; a2 + a1}, and min(a2) = argmax{0 ; a2 + a1 - C}.  
In terms of the new a2

new, clipped, clipped as indicated above if necessary, the new a1 
becomes:  
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where s = y1y2 as before.  After the new a1 and a2 values are obtained there still remains 
the task of obtaining the new b value.  If the new a1 is not "clipped" then the update must 
satisfy the non-boundary KKT relation: y1f(x1) = 1, i.e., fnew (x1) - y1 = 0.  By relating fnew 
to fold the following update on b is obtained: 
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If a1 is clipped but a2 is not, the above argument holds for the a2 multiplier and the new b 
is: 
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If both a1 and a2 values are clipped then we don’t have a unique solution for b. The Platt 
convention was to take: 

2
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+
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and this works well much of the time. Alternatively, Keerthi [15] has devised an alternate 
formulation without this weakness, as have Crammer and Singer [16]. Perhaps just as 
good as any exact solution for ‘b’ in the double-clipped scenario is to manage this special 
case by rejecting the update and picking a new pair of alphas to update (in this way only 
unique ‘b’ updates are made). Alpha-selection variants are briefly discussed in the 
Section after next. 
 
Chunking  
Chunking is described in [17] and [18], where use is made of sparsity and efficient testing 
of the KKT conditions. Depending on the problem, many of the α’s will either be zero or 
C. If we could easily identify α = 0, the corresponding calculation could be avoided 
without changing the value of the quadratic form. Then, at every chunking step we could 
solve the problem by reducing to the α ≠ 0 plus the KKT violating α’s. The size of this 
problem varies but is finally equal to the number of non-zero α’s [19]. While this 
technique is suitable for fairly large problems it is still limited by the maximal number of 
support vectors that it can handle. This is because for every chunk a quadratic optimizer 
is still necessary. In [20] we describe a new method for distributed SVM learning that 
eliminates many of these limitations on learning set size. 
 
Binary classification scoring conventions 
In this paper we adopt the following conventions: 
 

SN = TP/(TP + FN) 
SP = TP/(TP + FP) 
nSN = TN/(TN + FP) 
nSP = TN/(TN + FN) 

 
Bioinformatics researchers, in gene prediction for example [21], take as primary pair: 
{SN, SP}; ROC people, or people using a Confusion Matrix diagram, take as primary 
pair {SN, nSN}; Purity/Entropy researchers use {SP, nSP}; no one uses the pair {nSN, 
nSP} since it is a trivial label flip from being {SN, SP}. Label flipping leaves the 
sensitivity {SN, nSN} pair the same, similarly for the specificity pair {SP, nSP}. In other 



work we use the conventions that are commonly employed in gene prediction, and other 
instances where the signal identification is biased towards identification of positives. 
Specifically, they have two sets they focus on, the actual positives (genes) and the 
predicted positives (gene predictions). For gene prediction there is either a gene, or there 
is no-gene (i.e., junk, or background noise). In situations where your objective is to make 
the sets of actual positives (AP) and predicted positives (PP) maximally overlap, 
SP=specificity and SN=sensitivity are natural parameters and can be nicely described 
with a prediction accuracy Venn diagram (similar to a confusion matrix). For the problem 
here, we also describe the purity/entropy measures, in some examples, to be in-line with 
other efforts in the clustering research community. Thus, we work with the pair {SP,nSP} 
as well as {SP,SN}. 
 
Unsupervised Learning (Clustering) 
 
K-means is a simple algorithm for clustering a set of un-labeled feature vectors X : {x1, 
… , xn} that are drawn independently from the mixture density p(X|θ) with a parameter 
set θ.  At the heart of K-means algorithm is optimization of the sum-of-squared-error 
criterion function (SSE), Ji defined in definition SSE below. 
  
Definition SSE (Sum-of-squared-error): Given a cluster χ i, the sum-of-squared, Ji is 
defined by 

Ji  = Σx ||x−mi||2 , x∈ χ i ,  

and where mi is the mean of the samples belonging to χ i. The geometric interpretation of 
this criterion function is that for a given cluster χ i the mean vector mi is the centroid of 
the cluster by minimizing the length of the vector x−mi. This can be shown by taking the 
variation of Ji with respect to the “centroid” mi and setting it zero, 

∂/∂mi Ji  = ∂/∂mi Σx (x−mi)T (x−mi) = 2Σx (x−mi) = 0 

with minimum when equal to zero, where x ∈ χ i in the sums, and solving for mi: 

mi = 1/ni Σxx 

where ni = |χ i| is the number of feature vectors belonging to χ i. The total SSE for all of 
the clusters, Je is the sum of SSE for individual clusters. The value of Je depends on the 
cluster membership of the data, (i.e. the shape of the clusters), and the number of clusters. 
The optimal clustering is the one that minimizes Je for a given number of clusters, k, and 
K-means tries to do just that.  
 
Kernel K-means [22] is a natural extension of K-means. Denote Miν to be the cluster 
assignment variables such that Miν = 1 if and only if xi belongs to cluster ν  and 0 
otherwise. As for K-means, the goal is to minimize the Jν for all clusters, ν  in feature 
space, by trying to find k means Φ(mν) such that each observation in the data set when 
mapped using Φ  is close to at least one of the means. Since the means lie in the span of 
Φ(x1), …, Φ(xn), we can write them as: 

µν ≡ Φ(mν) = Σj γνjΦ(xj) 
We can then substitute this in the Ji of definition (10) to obtain, 



      Jν  = Σx ||Φ(x) − µν ||2 = Σx ||Φ(x) − Σj γνjΦ(xj)||2  

= K(x, x) − 2 Σj γνjK(x, xj) + Σij γνiγνjK(xi, xj), 

where x ∈ χ i in Σx, j ∈ 1..n in Σj, and i,j ∈ 1..n in Σij . We initially assign random 
feature vectors to means. Then Kernel K-means proceeds iteratively as follows: each new 
remaining feature vectors, xt+1, is assigned to the closest mean µα: 

Mt+1,α = 1 if for all ν  ≠ α, ||Φ(xt+1) − µα||2 < ||Φ(xt+1) − µν ||2, 

Mt+1,α = 0 otherwise. Or, in terms of the kernel function, 

Mt+1,α = 1 if for all ν  ≠ α, Σij γαiγαjKij − Σj γαjKt+1,j < Σij γνiγνjKij − Σj γνjKt+1,j, 

Mt+1,α = 0 otherwise, where Ki,j ≡ Kij ≡ K(xi, xj). The update rule for the mean vector is 
then given by, 

µt+1,α = µt,α + ∆(Φ(xt+1) − µt,α), 
where, 

∆ ≡ Mt+1,α / Σ1..t+1 Miα 
 
SVM-Internal Clustering 
The SVM-Internal approach to clustering was originally defined by [1]. Data points are 
mapped by means of a kernel to a high dimensional feature space where we search for the 
minimal enclosing sphere. In what follows, Keerthi’s method [15] is used to solve the 
dual (see implementation).  
 
The minimal enclosing sphere, when mapped back into the data space, can separate into 
several components; each enclosing a separate cluster of points. The width of the kernel 
(say Gaussian) controls the scale at which the data is probed while the soft margin 
constant helps to handle outliers and over-lapping clusters. The structure of a data set is 
explored by varying these two parameters, maintaining a minimal number of support 
vectors to assure smooth cluster boundaries.  
 
The SVM-internal Lagrangian formulation is presented in what follows, where we adopt 
the notation used by [23]. The SVM-internal results are shown in the comparative study 
described in the Results. 
 
SVM-Internal Lagrangian Formulation 

Let {xi} be a data set of N points in Rd (Input  Space.)  Similar to the nonlinear SVM 
formulation, using a non-linear transformation f , we transform x to a high-dimensional 
space – Kernel space – and look for the smallest enclosing sphere of radius R. Hence we 
have:  

||f (xj) - a ||2 = R2 for all j = 1,...,N 
where a is the center of the sphere. Soft constraints are incorporated by adding slack 
variables ?j: 

||f (xj) - a ||2 = R2 + ?j for all j = 1,...,N 



Subject to: ?j = 0 
We formulate the Lagrangian as: 

L = R2 - ? jßj(R
2 + ?j - ||f (xj) - a ||2) - ? j?jµj + C? j?j 

subject to: ßj = 0,µj = 0, 
where C is the cost for outliers and therefore C? j?j is the penalty term. Taking the 
derivative of L w.r.t. R, a and ?  and setting them to zero we have:  

? jßj = 1, 
a = ? jßjf (xj), and 

ßj = C – µj . 
Substituting the above equations back into the Lagrangian, we have the following dual 
formalism: 

W = 1 - ? i,jßißjKij where 0 = ßi = C; Kij = exp(-||xi - xj||
2/2s2) 

subject to: ? ißi = 1 
By KKT relations we have:  

?jµj = 0 and ßj(R
2 + ?j - ||f (xj) - a ||2) = 0. 

In the feature space, ßj = C only if ?j > 0; hence it lies outside of the sphere i.e. R2 < 

||f (xj) - a ||2. This point becomes a bounded support vector or BSV. Similarly if ?j = 0, 

and 0 < ßj < C, then it lies on the surface of the sphere i.e. R2 = ||f (xj) - a ||2. This point 

becomes a support vector or SV. If ?j = 0, and ßj = 0, then R2 > ||f (xj) - a ||2 and hence 
this point is enclosed with-in the sphere. 
 
SVM-External clustering 
Although the internal approach to SVM clustering is only weakly biased towards the 
shape of the clusters in feature space (the bias is for spherical clusters in the kernel 
space), it still lacks robustness. In the case of  most real-world problems and strongly 
overlapping clusters, the SVM-Internal Clustering algorithm above can only delineate the 
relatively small cluster cores. Additionally, the implementation of the formulation is 
tightly coupled with the initial choice of kernel; hence the static nature of the formulation 
and implementation does not accommodate numerous kernel tests. One way around this 
excessive geometric constraint, and others like it, is to use an external-SVM clustering 
algorithm (introduced in [1]) that clusters data vectors with no a priori knowledge of each 
vector's class.  
 
The algorithm works by first running a Binary  SVM against a data set, with each vector 
in the set randomly labeled, until the SVM  converges. Choice of an appropriate kernel 
and an acceptable sigma value will affect this convergence. After the initial convergence 
is achieved, the (sensitivity + specificity) will be low, likely near 1. The algorithm now 
improves this result by iteratively re-labeling only the worst misclassified vectors, which 
have confidence factor values beyond some threshold, followed by rerunning the SVM 
on the newly relabeled data set. This continues until no more progress can be made. 
Progress is determined by an increasing value of (sensitivity+specificity), hopefully 



nearly reaching 2. This method provides a way to cluster data sets without prior 
knowledge of the data's clustering characteristics, or the number of clusters. In practice, 
the initialization step, that arrives at the first SVM convergence, typically takes longer 
than all subsequent partial re-labeling and SVM rerunning steps. 
 
The SVM-External clustering approach is not biased towards the shape of the clusters,  
and, unlike the internal approach, the formulation is not fixed to a single kernel class. 
Nevertheless, there are robustness and consistency issues that arise in the SVM-External 
clustering approach. To rectify these issues, stabilization methods are described for 
SVM-external clustering that take into account the robustness required in realistic 
applications. 
 
Unsupervised Scoring: Cluster Entropy and Purity 
Let pij be the probability that an object in cluster i belongs to class j. Then entropy for the 
cluster i, ei, can be written as: 

ei = - Σj pij log pij  , where j ∈ 1..J, 

and J is the number of classes. Similarly, the purity pi for the cluster i can be expressed 
as,  

pi = maxj  pij 

Note that the probability that an object in cluster i belongs to class j can be written as the 
number of objects of class j in cluster i, nij , divided by the total number of objects in 
cluster i, ni, (i.e., pij = nij / ni) Using this notation the overall validity, fV, of a cluster i 
using the measure fi (for either entropy or purity) is the weighted sum of that measure 
over all clusters. Hence, 

fV  = 1/N Σi nifi   , where i ∈ 1..K, 

and K is number of clusters and N is the total number of patterns. For our 2-class 
clustering problem: 

 
p1 = max(SP, 1 - SP),  p2 = max(nSP, 1 - nSP) 

and: 
pV = max( (TP + TN)/(TP + FP + TN + FN); 1–(TP + TN)/(TP + FP + TN + FN) ) 
 
Entropy is a more non-localized (holistic) measure than purity. Rather than considering 
either the frequency of patterns that are within a class or the frequency of patterns that are 
outside of a class, entropy, takes into account the entire distribution. Further details on 
the entropic measure, however, are not discussed here. 
 
Early SVM-external Results 
The SVM-external approachl is first used on some simple synthetic data using some 
simple kernels [1,2]. In Fig. 2 we see correct clustering very quickly with the polynomial 
kernel (compared with no convergence when using the linear kernel). 



 
In clustering experiments in [2], a challenging data set consisting of 8GC and 9GC DNA 
hairpin data is examined (part of the data sets used in [13]). The hairpin dataset consists 
of 400 elements. Half of the elements belong to each class. Although convergence is 
always achieved, convergence to a global optimum is not guaranteed. Figures 3a and 3b 
show the Purity and Entropy (with the RBF kernel) as a function of Number of Iterations, 
while Fig 3c shows the SSE as a function of Number of Iterations. Note: the stopping 
criteria for the algorithm is based on the unsupervised measure of SSE (see Methods). 
Comparison to fuzzy c-means and kernel k-means is shown on the same dataset (the solid 
blue and black lines in Fig. 3a and 3b). In this early effort it was noted that random 
perturbation and hybridized methods (with more traditional clustering methods) could 
help stabilize the clustering method, but often at significant cost to its performance edge 
over other clustering methods. 
 
Thus, the SVM-external clustering method appears to offer very strong solutions about 
half the time – which allows for simple optimization by repeated clustering attempts 
(external optimization), or optimization via internal optimization, such as simulated 
annealing. Comparative results with other clustering methods are shown in Fig. 4 (using 
one of the most challenging pairs of DNA signals to resolve from analysis done in [1]). In 
the Results presented in what follows, a simulated annealing formulation of the internal 
optimization is shown.  
 
Results 
The SVM-Relabeler clustering algorithm is capable of clustering a wide range of data 
sets from simple multi-dimensional data sets (e.g., the Iris data set) to the complex 150-
dimensional Nanopore DNA hairpin data. These applications will now be described, 
along with Results upon introducing simulated annealing stabilization to the clustering 
process. 
 
Iris Data Set 
The Iris flower data set or Fisher’s Iris data set is a multivariate data set introduced by Sir 
Ronald Aylmer Fisher in [24] as an example of discriminant analysis. The data set 
consists of 50 samples from each of three species of Iris flowers (Iris setosa, Iris virginica 
and Iris versicolor). Four features were measured from each sample, they are the length 
and the width of sepal and petal (see Fig. 5). Based on the combination of the four 
features, Fisher developed a linear discriminant model to predict classes to which each 
sample belongs. We partly analyze the Iris data by performing one binary clustering 
evaluation. (This can be iterated on the binary clusters identified until no further clusters 
can be resolved to arrive at a multiple cluster resolution method without specification of 
cluster number, but that will not be discussed further here.) Fig. 6 shows the binary 
cluster splitting and it precisely identifies one cluster and groups the other two, 
demonstrating excellent performance. 
 
DNA Hairpin Data Set 
In [1, 25-27] it is shown that the alpha-hemolysin nanometer-scale channel can be used to 
associate ionic current measurements with single-molecule channel blockades. In 



particular, the nanopore dimensions are such that they allow for lengthy dsDNA terminus 
measurements This is because the alpha-Hemolysin entry aperture is 2.6 nm in diameter 
which is large enough to capture approximately 10 base-pairs of dsDNA (the limiting 
aperture prevents further passage).  
 
The data set is chosen to be a symmetric sample of 200 8GC blockade signals (i.e., 
blockade signals due to 8 base-pair DNA hairpins ending in 5’-GC-3’) and 200 9GC 
blockade signals. Each feature vector is 150 dimensional and normalized to satisfy the L1 
(norm = 1) constraint. Features from the 8 and 9 base-pair blockade signals were 
extracted using Hidden Markov Models (for details, see [13]). Although convergence was 
easily achieved with the SVM Relabeler algorithm (see Methods), convergence to a 
global optimum was not guaranteed. Figure 7a & 7b illustrates the characteristic behavior 
of different possible solutions with the data sets indicated. At the end of a successful run 
of this algorithm it is hypothesized that the generalization error (testing error) will be 
very small. In Figure 8 a small value of Kernel-SSE (herein referred to as SSE) is shown 
to provide us with a reliable cluster validation measure. 
 
The SVM-Relabeler algorithm does not use an objective function and the hope is that by 
running the algorithm in its purest form the resulting clusters are reliable solutions. 
However, running this algorithm in this basic fashion does not consistently provide us 
with a satisfying clustering solution. In fact, the solution space can be divided into three 
sets: successful, local-optimum, and unsuccessful (see Fig. 7). Unsuccessful solutions and 
local optima solutions are undesirable and the objective is to find a method to eliminate 
their usage by simply re-clustering for objectively improved clustering (via SSE scoring, 
for example). Since, the solutions in the unsuccessful set are expected to be easily 
identified in any experiment that calculates the SSE of a randomly labeled data set, they 
can be simply eliminated by post-processing. For instance, in a similar experiment we 
have randomly labeled the dataset 5000 times and calculated the SSE distribution for the 
experiment. The resulting distribution has a good fit to Johnson’s SB distribution and is 
illustrated in the histogram of Fig. 9. Using a fitted distribution one can calculate the p-
value of a given SSE. For a SSE threshold of 170.5 (accidentally very unlikely) we can 
directly eliminate the unsuccessful set. 
 
To substantially reduce the local optimum solutions, however, thresholding does not 
scale well. One solution is a to use a simple hill climbing algorithm which is to run the 
algorithm for a sufficiently long number of iterations to find the solution with the lowest 
SSE value. To do this the clustering algorithm is run repeatedly and randomly initialized 
every time. A solution is accepted as the best solution (so far) if it has a lower SSE than 
the previously recorded value. This can be a very slow learning process, and is a familiar 
scenario in statistical learning, and one of the popular solution in those situations presents 
itself here as well – simulated annealing. 
 
Refinement Methods Using Simulated Annealing 
It is observed that random perturbation by flipping each label at some probability, ppert, is 
often sufficient to switch to another subspace where a better solution could be found. 
(Note that ppert = 0.50 has the effect of random reinitialization and ppert = 1 flips the entire 



labels.) The hope is that perturbation with ppert ≤ 0.50 results in a faster convergence. 
Reliability can be achieved by searching through the solution space. To do this 
efficiently, Monte Carlo Methods could be used by taking advantage of perturbation to 
evaluate the neighboring configuration. The procedure described next uses a modified 
version of Simulated Annealing to achieve this desired reliability. 
 
As shown in Figure 10a, top panel, constant perturbation with ppert = 0.10 results in a 
local-optimum solution that could be otherwise avoided by using a perturbation function 
depending on the number of iterations of unchanged SSE (Figure 10b, top panel). These 
results were produced using an exponential cooling function, Tk+1 = βkTk, with β = 0.96 
and T0 = 10. The initial temperature, T0 should be large enough to be comparable with the 
change of SSE, ∆SSE, and therefore increase the randomness by making the Boltzman 
factor e − ∆SSE / T ≈ e0, while β (< 1) should be large enough to speed up the cooling effect. 
 
Projection Clustering – clustering in Decision space 
SVM methods for clustering are described that are based on the SVM’s ability to not only 
classify, but also to give a confidence parameter on its classifications. Even without modifying 
the label information (passive clustering), there is often strong clustering information in an SVM 
training solution. One such instance occurs when one set, the positives, are a known signal 
species (or collection of species). If you have mixture data with known and unknown signal 
species, and wish to identify (i.e., cluster) the unknown species, then an SVM training attempt 
with the mixture taken as negatives leads to a cluster identification method via an SVM 
“projection-score” histogram. (i.e., cluster partitioning in Decision Space). Real channel blockade 
data has been examined in this way, biotinylated DNA hairpin blockades comprised the positives, 
and scored as a sharp peak at around 1.0 (see Fig. 11). The mixture signals seen after introduction 
of streptavidin cluster with scores around 0.5, corresponding to (unbound) biotinylated DNA 
hairpin signals, and signals that score < –1.0, corresponding to the streptavidin-bound 
biotinylated DNA hairpins. SVM projection clustering can be a very powerful clustering tool in 
and of itself as can be seen in this cheminformatics application. 
 
Discussion 
The highest standard of performance for the SVM-based external clustering method 
would be that it do as well at cluster grouping as its SVM classification counterpart (that 
trains with the true label information). We occasionally see such excellent levels of 
performance with SVM-external clustering, and the goal is to be able to single out these 
cases when selecting clustering solutions via some stabilization method. Here we apply 
the simulated annealing method and it appears to solve the stability problems encountered 
in [2], at least on the data sets studied, to reliably yield excellent clustering solutions. If in 
the general data clustering context and simulated annealing becomes unmanageable, 
genetic algorithm tuning could also be used. Early tests with SVM tuning using genetic 
algorithms show strong performance (results not shown). 
 
Cluster Validators 
The fitness of the cluster identified by the SVM-Relabeler algorithm is modeled using a 
supervised measure, purity and an unsupervised measure, Kernel SSE. In other words, we 
assume that the fitness of a cluster can be tracked using the compactness of that cluster as 
the algorithm progresses. It is necessary to note that i) the notion of compactness as a 



way to evaluate clusters favours spherical clusters over clusters spread over a linear 
region, and ii) the known classes may not properly correspond to the geometric structure 
of the clusters. However, this limitation does not normally affect our methodology, since 
this limitation is imposed over the feature space, and with a choice of proper kernels and 
parameters, feature space can be more likely to have higher variation in the lifted 
dimensions such that spherical-cluster representations are accurate. 
 
Fisher Validator 
Scaling and transformation requires knowledge about the geometry of the problem at 
hand. This information is often unavailable to data analysts. SVM-Relabeler can be 
improved to take advantage of the discriminant function provided by the SVM solution. 
In Fig. 8 we have shown the histogram of the decision space and demonstrated that the 
method is effectively separating the clusters. Let m1, m2, s1 and s2 be the means and 
standard deviation of the decision space projection shown in Fig. 8. The function, 

J(ω) = |m1 − m2| /[(s1)2 + (s2)2] 
for ω is the derived weight factor, can be used to validate the clusters. Generally, larger 
J(ω) corresponds to better separation, while taking into account the compactness of the 
clusters. Note: J(ω) is used as the objective function of Fisher’s discriminants [22]. 
 
Tuning SVM-Relabeler 
Kernel selection is highly data set dependant and so far accurate methods for choosing 
kernels are not automated [28-31] (although initial efforts using genetic algorithm tuning, 
with the channel current data, appear to be successful). The SVM-Relabeler results 
produced in this work assume the value of 1.5 for the SVM regularization constant, C, 
and make use of the Absdiff, Sentropic, and Gaussian kernels. When working with 
similar data in a standard single-pass SVM classification, the typical settings used are C = 
10.0, with a significantly shifted optimum in kernel parameter tuning. The choices of the 
SVM regularization constant, C, has profoundly different utility when used in the context 
of SVM-Relabeler. The choice of C in the supervised SVM controls the trade off between 
the training error and the generalization error, and therefore, it effectively controls the 
soft margin. Since this margin is not known to us when clustering, the value of C has to 
be chosen empirically. While we generally find C >= 10 to be good for classification, for 
SVM clustering, tuning to larger values of C tends to reduce performance much sooner 
than with SVM classification. This is because a larger C value reduces the number of 
misclassifications (boundary support vectors) accessible to the SVM-Relabeler algorithm 
(see Methods), where a specified (tuned) percentage of boundary support vectors have 
their labels flipped. It is observed that the percentage of label flipping is stable, however, 
given a good choice of kernel and parameters, i.e., when everything else is tuned 
properly, small changes in the relabeling percentage are not seen to alter clustering 
performance significantly.  
 
Conclusion 
In this work, new methods for clustering are explored. The method uses the Support 
Vector Machine’s discriminant learning and confidence evaluation, and does not 
explicitly depend on an objective function. The solution yielded by this algorithm is 
evaluated using a criterion function, but it remains external to the algorithm. Simulated is 



successfully used to stabilize this process on the datasets studied. The hope is that this 
work provides a new perspective on unsupervised learning processes. 
 
 
Method 
 
SVM-Relabeler: An External Method of SVM Clustering 
Although the internal approach to SVM (see svm-internal) clustering is only weakly 
biased towards the shape of the clusters in the input space (the bias is for spherical 
clusters in the feature space), it still lacks robustness. In the case of most real-world 
problems and strongly overlapping clusters, the SVM- Internal Clustering algorithm 
above can only delineate the relatively small cluster cores. Additionally, the 
implementation of the formulation is tightly coupled with the initial choice of kernel; 
hence the formulation does not accommodate numerous kernel tests. We avoid this 
constraint by making use of an external-SVM clustering algorithm (called SVM-
Relabeler in [2]).  SVM-Relabeler clusters data vectors with no a priori knowledge of 
each vector’s class. SVM-Relabeler algorithm works by first running a Binary SVM 
against a data set, with each vector in the set randomly labeled, until the SVM converges. 
The SVM-Relabeler algorithm now improves convergent SVM label result by iteratively 
re-labeling only the worst misclassified vectors, which have confidence factor values 
beyond some threshold, followed by rerunning the SVM on the newly relabeled data set. 
This continues until no further progress can be made. 
 
Unsupervised Cluster Validator 
Unlike purity, unsupervised evaluation techniques do not have external class information. 
These measures are often optimization functions in many clustering algorithms. Sum-of-
Squared-Error, SSE, measures the compactness of a single cluster, and other measures 
evaluate the isolation of a cluster from other clusters. Standard SSE is typically calculated 
in the input space, which does not necessarily correspond with a good cluster measure in 
the kernel feature space. Below, we show the unsupervised cluster validator that works in 
the kernel’s feature space instead. 
 
Sum-of-Squared-Error, SSE, in input space, can be written as: 

Je = ½ Si ni Si , where i ∈ 1..K, 

and where for any similarity function s(x, x′) 

Si = 1/(ni)2  Σx Σx′ s(x, x′) , where x, x′ ∈ Di 

We use Euclidean distance as the measure of similarity. Hence, 

s(x, x′) = ||x - x′||2 

As before, let Φ  : Di ?  Fi and K(x,y) = {Φ(x), Φ(y)}, then Je can be rewritten (this time 
feature space)  as: 

Je =  Si Ji , where i ∈ 1..K, 



and 

Ji =  Σx K(x,x) – 1/ni Σx Σx′ k(x,x′), where x, x′ ∈ Di 

Note that SSE, like any other unsupervised criterion, may not reveal the true underlying 
clusters, since the Euclidean distance simplification favors spherically shaped clusters. 
However, this geometry is often imposed after the data is mapped to the higher 
dimensional feature space, so this measure is often acceptable. 
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Figures 
 
Figure 1. Hyperplane Separability. A general hyperplane is shown with its decision-
function feature-space splitting role implicit in the indicated margin width and offset 
from the origin, also noted is misclassified case for the general formalism. 
 
Figure 2. A test of the SVM-external clustering algorithm, using a simple kernel. 
The randomized label data set clearly falls into two clear clusters, one central, one at 
fixed radius, both radially symmetric about the origin. The linear kernel (i.e., the dot-
product non-kernel case) fails to converge to a solution. The polynomial kernel does 
converge, and very quickly, within 3 iterations, as can be seen. 
 
Figure 3. SVM-external clustering results from [2]. (a) and (b) show the boost in 
Purity and Entropy as a function of Number of Iterations of the Re-labeler algorithm. (c) 
shows that SSE, as an unsupervised measure, provides a good indicator in that 
improvements in SSE correlate strongly with improvements in purity and entropy .   The 
blue and black lines are the result of running fuzzy c-mean and kernel k-mean on the 
same dataset. 
 
Figure 4. Clustering performance comparisons: SVM-external clustering 
compared with explicit objective function clustering methods. In those cases where 
drop percentages are indicated, tuning was used to drop ‘weaker’ data. The figure shows 
the nanopore detector blockade signal clustering resolution where the blockades are due 
to individual molecular capture-events with 9AT and 9CG DNA hairpin molecules. This 
was a very difficult data set to resolve with the SVM classifier – even when ‘bag-labeled’ 
training data is used (i.e., bag-labeled from experiments run only with one or the other 
molecule introduced). The label 9AT is used for the control molecule that is nine base-
pairs in length and ends with 5’-AT-3’ and has a 4dT loop, the same for 9CG, except it 
has terminal base-pair 5’-CG-3’.  The SVM-external clustering method consistently out-
performs the other methods (see [1] for further details on this effort). 
 
Figure 5. Fisher’s Iris data set. The Iris data set consists of 50 samples from each of 
three species of Iris flowers (Iris setosa, Iris virginica and Iris versicolor). Four features 
were measured from each sample, they are the length and the width of sepal and petal. 
 
Figure 6. Recovery of main binary splitting in three-species Iris data set. The figure 
shows the labeling recovered after doing one binary clustering operation (on the full 
dataset). The Gaussian kernel was used with  = 2.0, C = 1.5, and σ = 0.5. 
 
Figure 7. (a) Kernel SSE validation during SVM-external clustering with 8GC and 
9GC DNA hairpin blockade data. There are 200 samples of each, where each sample 
results in a 150-component feature vector that is normalized to 1.0. Plots show Kernel 
SSE values (Absdiff kernel with σ = 1.8) as the SVM-external clustering algorithm 
iterates (post initial convergence). 
 
Figure 7. (b) Purity scoring during operation of Kernel SSE validator. Plots show 



Purity values as the SVM-external clustering algorithm iterates (post initial convergence). 
 
Figure 8. (a) The histogram of the projection of feature vectors on a unit vector 
orthogonal to the decision hyperplane. Features are classified according to the sign of 
this projection. As can be seen, by iteration 17 the data set has been clearly separated. For 
these experiments: Absdiff kernel (with σ = 2.0), C = 1.5, and relabeling factor = 0.15. 
 
Figure 8. (b) The learning plots. The plots show iteration by iteration the view of the 
experiment shown in Fig. 8a. as can be seen, there is correlated decrease in Kernel SSE 
value, test error, and training error, and simultaneous increase in the purity. 
 
Figure 9. The distribution of Kernel SSE values over random binary-labeled data. 
The histogram shows what to expect from random labeling on the training problem 
shown in Fig. 7, and provides a validator criterion on clustering solutions when they fall 
well outside the support of the random label SSE values. Again, use is made of the 
Absdiff kernel with σ = 1.8. The best-fitted Distribution we could identify was Johnson’s 
SB distribution, and that is the curve that is shown. 
 
Figure 10. (a) Simulated annealing with constant perturbation. The behavior of the 
simulated annealing algorithm using a constant perturbation functions is shown (the 
variable case is in the net figure). The top panel shows the learning behavior when 
constant 10% perturbation is applied at every iteration. The bottom panel shows the 
annealing process. 
 
Figure 10. (b) Simulated annealing with variable perturbation.  The behavior of the 
simulated annealing algorithm using a variable perturbation functions is shown. The top 
panel shows the learning behavior when constant 10% perturbation is applied at every 
iteration along with boosts in the perturbation probability based on the number of 
iterations during which SSE remained constant (Bottom panel). (The timing of the 
annealing process is shown in 10a Bottom panel.) 
 
Figure 11. Projection clustering with channel current blockade data. A nanopore 
detector experiment is performed in which two reactants are introduced: a biotinylated 
DNA hairpin and streptavidin. Only the biotinylated DNA is likely to be observed at the 
channel, or the bound streptavidin – biotinylated DNA, due to the negatively charged 
DNA molecules. The biotinylated DNA hairpin signal by itself is well studied so makes 
an excellent example of the positives to use in the projection clustering. The negatives 
consist of the mixture file observations made upon introduction of streptavidin, in excess, 
to a solution in the analyte chamber that contains only biotinylated DNA hairpins. Bound 
complexes are hypothesized to form upon introduction of the streptavidin, with a new 
signal class emerging, as can be seen, along with some of the old signal class. The 
biotinylated DNA hairpin blockades comprised the positives, and scored as a sharp peak 
at around 1.0. The mixture signals seen after introduction of streptavidin cluster with 
scores around 0.5, corresponding to (unbound) biotinylated DNA hairpin signals, and 
signals that score < –1.0, are hypothesized to correspond to the streptavidin-bound 
biotinylated DNA hairpins.  
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